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Abstract: Remote sensing is often used to monitor snow cover in areas without sufficient in-situ 
observations. However, a common problem with remotely sensed snow cover products is the mis-classification 
of snow cover due to obscuration of the land surface by cloud, along with the similar spectral characteristics of 
snow and cloud. In a two part preliminary investigation we assessed the ability of a Hidden Markov Model 
(HMM) to reduce classification errors in optical snow cover mapping along with the transition and emission 
probabilities output from the model, to our knowledge for the first time documented. This research focuses on 
the latter and was conducted within the Sustainable Development Investment Portfolio (SDIP) at CSIRO.  

A Hidden Markov model can utilise a series of input observations and calculate the probability that they 
represent the ground state. These probabilities are then used to model the most likely series of states, this 
effectively provides a dynamic filter that can mitigate the problems faced when remotely sensing snow in 
mountainous areas. As part of a larger project, we applied this approach to snow cover mapping over a single 
sub-basin in the Himalayas in Eastern Nepal based on imagery from the (MODIS) instruments on the Terra 
and Aqua satellites. This study analysed spatially mapped transition and emission probabilities extracted from 
a two state Hidden Markov Model. 

The ability of a Hidden Markov model to employ a dynamic filter that can utilise entire sequences of 
observations will likely offer improved accuracy when compared to other time-series filtering methods. This 
is because it is able to utilise a much larger number of observations without compounding losses in accuracy 
or causing reductions in temporal resolution. Our probability analysis shows the potential for a HMM approach 
to provide a robust and flexible method for processing ‘noisy’ data such as remotely sensed snow cover 
measurements. The improvement of spatio-temporal snow cover measurements has broader implications for 
hydrological modelling, particularly in countries dependent on snow melt for subsistence agriculture and 
hydroelectric facilities such as Nepal. Improvements also benefit the long-term analysis of snow cover trends 
which are an important proxy for assessing the impacts of climate change in sensitive mountain areas. Further 
studies should apply this method to multiple study sites and quantitatively compare it to other cloud-cover 
reduction techniques for snow cover imagery.   
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1. INTRODUCTION 

The remote sensing of snow cover typically uses visible and near-infrared satellite-borne sensors such as 
LANDSAT or the MODerate Resolution Imaging Spectroradiometer (MODIS). The Normalised difference 
snow index (NDSI) allows snow to be discriminated from other land surfaces through its high reflectance in 
visible wavelengths (Hall et al., 2010). Due to their similar spectral signature clouds are the primary barrier to 
accurate measurements of snow cover using optical sensors. This is a significant problem in areas with 
persistent cloud-cover such as the Himalayas. Most solutions utilise a temporal filter on a pixel-by-pixel basis 
that prioritises observations other than cloud over a set window of time (Gafurov and Bárdossy, 2009). Whilst 
this can result in a reduction of classification errors, this type of filter treats sequential observations using static, 
conditional rules that may impact the temporal resolution of observations and overly simplify the complexities 
of the snow-cloud-sensor relationship. In this study we implement a Hidden Markov Model (HMM) to MODIS 
snow cover observations as an alternative filtering method and investigate the transition and emission 
probabilities output by this model. The Himalayas provide a challenging study site for the remote sensing of 
snow cover due to the monsoonal cloud cover they experience thus providing a suitable study site for this 
research (Immerzeel et al., 2009). Furthermore, the regions vulnerability to climate change, dependence on 
snow melt for drinking and irrigation and poverty provide strong motivations for research in this area. 

A Markovian approach to modelling provides a dynamic alternative to traditional time-series filtering by 
employing a state based model that can interpret sequences of observations to try and accurately describe the 
stochastic processes behind them (Rabiner, 1989). These differ to the static temporal filters described above 
because they provide a flexible method of processing observations that can adapt to changes in the system. 
There are several key components that make up a Markov model. The order refers to the number of states taken 
into consideration when modelling the following state. A first-order Markov chain infers that the next state 
depends only on the current state and no previous states, this can be expanded to second-order chains and so 
on. Setting a finite number of previous states for the model to consider avoids creating an intractable problem 
where the length of time required to calculate a solution is too long to be useful (Ghahramani, 2001). A relevant 
example of a three-state Markov model applied to the weather as outlined by Rabiner (1989) lists three possible 
states which can be directly observed; rainy, cloudy or sunny and a corresponding matrix outlining the 
transition probabilities between each of them. A transition matrix outlines the probabilities associated with 
possible state changes within a Markov model. By processing the sequence of states one can determine the 
probability of state transitions within the model, this includes the probability of a state persisting over a given 
time.  

In the above example the state of the system can be directly observed, a HMM becomes relevant when the state 
cannot be directly observed. In these cases only the sequence of stochastic outputs that relate to the hidden 
states can be observed (Rabiner and Juang, 1986). There are many different permutations of a HMM, these can 
include various combinations of states, orders, filters and algorithms. The following is a broad description of 
the general components in the context of this study. A HMM can interpret a noisy sequence of observations, 
associate these to non-directly observable states via probability distributions and then model the most likely 
series of states based on this information. In a HMM only the output, dependent on the hidden state, is 
observable and thus probability distributions must be based on these visible observations. Thus at a single time 
step in a two-state HMM one can infer the probability of transitioning between either state and the probability 
of a state’s emission of an observation, the latter are known as emission probabilities. A conceptual 
representation of a two-state HMM is shown in Figure 1 in which the relationship between the states and 
observations of a model can be viewed through the possible transition and emission probability pathways. In 
the case of remote sensing the series of radiometric measurements are observable via satellite, these 
measurements are related to the chain of states that are not directly observable, for example; a series of hidden 
states. In this case these could be whether the ground is covered by vegetation or bare soil regardless of whether 
the returned radiometric measurement is that of cloud cover. The premise of a HMM’s relevance to remote 
sensing is that there is a series of discretely timed and valued radiometric observations from satellites that 
represent states which cannot be directly observed from space (Viovy and Saint, 1994).  
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Figure 1. Conceptual diagram of a HMM (tx = state transition probability, ex = observation 
emission probability) 

2. METHODOLOGY 

2.1. Study area 

The study site is the Dudh Koshi, a sub-basin of the Koshi river basin in the Eastern Himalayas (Figure 2). The 
Koshi river basin is the largest in Nepal, draining around 70,000 km2 that includes the Eastern Nepalese 
Himalaya as well as part of Tibet and northern India (Agarwal et al., 2014, Dixit et al., 2009). Elevation ranges 
from 65 to 8848 m meters above mean sea level, with elevation increasing towards the north (Agarwal et al., 
2014, Shrestha et al., 2015). The majority of precipitation in the basin occurs in the monsoon between June and 
September and its spatial distribution is strongly influenced by the mountain ranges in the north (Shrestha et 
al., 2015).  

 

Figure 2. Study site, Koshi basin and sub-basins, Nepal (Summer). Blue outline denotes the 
catchment boundary over RGB optical image (adapted from Nepal et al., 2015) 
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2.2. Datasets 

Daily and 8-day aggregate snow cover data collected by MODIS (NSIDC, 2016) is available from the NSIDC 
(National Snow and Ice Data Center). Snow cover is calculated from raw spectral data by applying the NDSI 
(1) to the existing MODIS bands (band 4 = 545-565 nm, band 6 = 1628-1652 nm). Higher spatial resolution 
imagery is collected by LANDSAT however the temporal resolution is lower at 16 days (Goward et al., 2001, 
Hall et al., 2002). Images recorded daily have a greater chance of recording snow fall and melting events 
compared to the 8-day MODIS products and 16 day LANDSAT imagery (Gafurov and Bárdossy, 2009). 
Previous MODIS snow cover products recorded snow cover fractions on a scale of 0-100 however the latest 
version, collection 6, has shifted to binary snow cover measurements, thus this study focuses on the latter 
(NSIDC, 2016). Daily remotely sensed snow cover images are more susceptible to viewing angle problems 
and these represent a source of error. Version 6 of the products used incorporates both a solar zenith and short-
wave infrared reflectance filter that reduce uncertainty in snow cover measurements related to high and low 
sun angles.  

MODIS Terra images the Earth in descending orbit at 10:30 am and Aqua at 1:30 pm in an ascending orbit, 
these times are local time in Nepal. The derived products are available as 10°x10° (approximately 1200 km2) 
tiles at 500-meter resolution in sinusoidal projection.  The Data processed was from 2002 until 2015 for both 
Terra and Aqua.  ܰܫܵܦ ൌ ܾܽ݊݀	4 െ ܾܽ݊݀	6ܾܽ݊݀	4 ൅ ܾܽ݊݀	6																						ሺ1ሻ 
2.3. Model implementation 

Figure 3 depicts how the two-state HMM interacts with the MODIS data processed in this study. The model 
works on a pixel-by-pixel basis, processing the entire sequence of MODIS observations at each pixel to model 
the transition and emission probabilities for that pixel. There is a total of 17329 MODIS pixels within the study 
site. The states, corresponding symbols and initial starting probabilities of the model are shown in Table 1. A 
HMM model is comprised of two interacting algorithms outlined in Rabiner (1989).  First, the Baum-Welch 
algorithm adjusts the initial state transition probabilities Table 2) of the model using an input observation 
sequence extracted from the MODIS snow cover images, training the model. These are then used to calculate 
new emission probabilities (Table 3), this occurs for each pixel. This study focuses on interpreting the updated 
probabilities output by the Baum-Welch algorithm. 

The Viterbi algorithm is a method of modelling the ‘hidden’ part, the non-directly observable states, within a 
HMM, this is effectively the most likely explanation of an observation sequence. This algorithm calculates the 
optimal sequence of states for the given sequence of observations using the optimised transition probabilities 

Figure 3. a)  Conceptual diagram of the HMM analysis, T = MODIS snow cover image for a 
single day 

(b) Conceptual diagram of a HMM processing a series of observations at a MODIS 
pixel, t = daily time step 
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and emission probabilities calculated by the Baum-Welch algorithm along with the sequence of observations. 
This part of the HMM is not addressed in this study. 

 

Table 1. HMM states, symbols and initial probabilities 
States snow no snow / unknown 

Symbols 1 0 

Initial probabilities 0.5 0.5 

Table 2. Transition probabilities (1 = snow, 0 = no snow/ unknown) 
 1 0 

1 0.8 0.1 

0 0.1 0.8 

Table 3. Emission probabilities (1 = snow, 0 = no snow / unknown) 
 

 

 

3. RESULTS 

Each HMM run implements the Baum-Welch algorithm, producing an updated set of transition and emission 
probabilities for each pixel within the study site based on the series of observations that are input for the pixel. 
The updated probabilities for each transition can be spatially represented across the study sites as shown in 
Figure 4 and Figure 5 where sets of four graphs for both transition and emission probabilities are visible. It 
should be noted that almost all snowfall in the sub-basin occurs in the northern, higher elevation parts. The 
transition probabilities represent the probability of a specific state transition occurring within the HMM for a 
specific pixel. The emission probabilities refer to the relationship between the hidden state in the model and 
the observations as provided by the input data. Emission probabilities are the probability of an emission 
(observation) accurately representing the internal hidden state of the model for that specific state transition. 

Each of the four graphs within a set represents the probabilities for a specific transition or emission. Transition 
probability maps for all inputs are generally consistent across the study site showing high probabilities of 
remaining in either state (1 to 1, 0 to 0) and low probabilities for state changes (0 to 1, 1 to 0). Slight artefacts 
are visible in the north-east corner of the sub-basin for the 0 to 0 state transitions, this is likely due to a large 
shadowed valley surrounded by mountains effecting the sensors ability to record information (Figure 2), this 
in-turn influences the model. 

Emission probabilities for the study’s HMM results generally have spatial variation and differences between 
the state transitions (Figure 5). For the 1 to 1 transition the emission probabilities are mostly low with slightly 
higher probabilities across the high elevation areas, these likely represent the increased chance of snow cover 
at increasing elevations. The spatial distribution of emission probabilities in the 1 to 0 transition show that 
lower elevation areas have higher probabilities and the very high elevation peaks have low probabilities. The 
0 to 1 transition shows higher emission probabilities in the high elevation areas of the sub-basin, this indicates 
that both MODIS daily snow cover products do a better job of detecting transition to snow values from no 
snow / unknown in these areas. Finally, the 0 to 0 state transition show lower probabilities in the higher 
elevation regions and higher probabilities in the lower, snow free areas. 

 1 0 

snow 0.50 0.50 

no snow / unknown 0.51 0.49 
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Figure 4. MOD10A1 (left) and MYD10A1 (right) transition probabilities for a two state HMM in 
the Dudh Koshi sub-basin (2002-2015) 1 = Snow, 0 = No snow / unknown 

 

Figure 5. MOD10A1 (left) and MYD10A1 (right) emission probabilities for a two state HMM in 
the Dudh Koshi sub-basin (2002-2015) 1 = Snow, 0 = No snow / unknown 

4. DISCUSSION 

The transition probabilities in Figure 4 show that the model gives high probabilities for remaining in a snow 
covered or not snow-covered state and low probabilities for transitioning between snow or not snow. This is 
evidence of the smoothing ability of the HMM in that it reduces the amount of false transitions between snow 
and not snow values that typically occur due to cloud obscuration. The emission probability maps in Figure 5 
represent the chance of a particular observation (MODIS snow cover products) occurring whilst in a certain 
state, either 1 (snow) or 0 (no snow / unknown). Overall they show that the MODIS snow cover products 
mostly agree with the HMM output for the 1 to 0 transition, except for very high elevation areas where snow 
cover is permanent. As snowfall does not occur in the southern part of the basin, the probability is almost 0 for 
both transitions to a snow state, 1 to 1 and 0 to 1. Observations tend to agree in the lower elevations for the 
transitions to a no snow / unknown state, represented as 0 to 0 and 1 to 0, as this part of the study site very 
rarely has snow observations. Spatially mapping HMM probabilities for remotely sensed data in this way has 
not been conducted before and this may provide a valuable new method of visualising a sensors relationship 
with a particular model and land surface type. 

5. CONCLUSIONS AND RECOMMENDATIONS 

As part of a broader project a HMM was applied to remotely sensed snow cover data of an Eastern Himalayan 
basin, this study analyses the spatially mapped emission and transition probabilities of the model. These 
analyses provide insight into the ‘thinking’ of machine learning models within the context of remote sensing 
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through the ability to spatially represent the state transition probabilities and their relationship with the input 
data over the study site. We found that the modelled transition and emission probabilities demonstrated that 
the model was more stable, i.e. there was less false variation in ground state, than the state transition 
probabilities extracted from the cloud contaminated data provided as input. As this was a preliminary 
investigation further research into remote sensing applications for HMM emission and transition probabilities 
should be conducted. HMMs could be used to improve other remotely sensed products that suffer from cloud 
contamination. 
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