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Abstract:    In this research, we describe an optimization problem motivated by the need to maintain 
infrastructure net-works over time. We consider infrastructure networks in which product is transported 
between distinct origin-destination pairs, and at the same time the infrastructure assets need to be maintained 
by resources moving in the network. In order to perform maintenance the assets have to be shut down from 
time to time thus reduc-ing the system capacity for those time periods. The objective is to maximize the 
total transported product by aligning the maintenance activities appropriately.

This problem combines flow maximization with maintenance scheduling capturing some important aspects of 
the motivating practical problem: (1) the interaction between utilization of network assets such as nodes and 
arcs and their maintenance demands, (2) the limited resources available to perform the maintenance, and (3) 
the time for moving the maintenance resources between different locations in the network. Depending on the 
application context, there are a number of natural ways to reflect these in a mathematical model, and this gives 
rise to a rich and challenging optimization problem which we call the network maintenance problem.

We formally introduce the problem, and present a mixed integer programming formulation. Next, we consider 
the case of a single commodity and a single maintenance resource when the network is a single path. We 
describe a polynomial time algorithm which, under some simplifying assumptions, solve the single path case 
to optimality. The problem becomes more challenging when the simplifying assumptions are dropped.
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1 INTRODUCTION

We consider a problem in which a network with arc capacities and a list of distinct origin-destination pairs
are given. The network is used to send flow between the origin-destination pairs. At the same time, the arcs
of the network need to be maintained by maintenance resources moving in the network. We are interested in
scheduling maintenance activities on the arcs of the network so as to maximize the total flow over a set of
time periods. Each arc has an inventory which represents the condition of that arc. The higher the level of
inventory, the better the condition of the arc. Sending flow along an arc consumes its inventory which then has
to be replenished by a maintenance resource. When the inventory is zero on an arc, the arc is broken, implying
that no flow can be sent through that arc. Furthermore, maintenance on an arc shuts down the arc, making its
capacity zero for that period. This problem is motivated by real-life applications in infrastructure networks,
where the infrastructure assets are maintained over periods of time.

Boland et al. (2014) introduced a general network optimization problem in which a set of arc maintenance
jobs needs to be scheduled such that the total flow in the network over time is maximized. A simplified
version of the problem in which all jobs have unit processing times was studied by Boland et al. (2014). The
authors establish the complexity of the problem taking into account certain instance characteristics, such as
special network structures and restrictions on the set of jobs. Boland et al. (2016) extended the problem by
adding a constraint to ensure that the number of jobs scheduled in any time period does not exceed a given
number. Those problems are different from the network maintenance problem introduced in this paper as they
assume that a set of maintenance jobs with their corresponding time windows are given a priori. The network
maintenance problem decides when and how much maintenance is required for each arc such that the total
flow is maximized.

We may compare some special cases of the network maintenance problem (e.g., when the network is a single
arc) to the lot-sizing problem with sales (see e.g., Loparic et al., 2001). We consider each arc of the network
maintenance problem as a commodity in the lot-sizing problem. Increasing the inventory of an arc by doing
maintenance is equivalent to increasing the inventory of a commodity by production. In addition, sending
flow through an arc decreases its inventory which is equivalent to decreasing the inventory of a commodity by
selling it. Note that in the network maintenance problem, doing maintenance and sending flow cannot occur on
an arc at the same period, while production and sale in a typical lot-sizing problem may occur for a commodity
at the same period. The reader is referred to Pochet and Wolsey (1995), Pochet and Wolsey (2006), Van Vyve
(2004), and Van Vyve (2006) for more details on lot-sizing problems.

This paper is organized as follows: In Section 2 we present a mathematical formulation for the problem. In
Section 3 we study the special case of the problem in which the network is a single path. Finally, the paper is
concluded with Section 4.

2 MATHEMATICAL FORMULATION

We are given the following data:

1. a network G = (V,A) with node set V arc set A, and a capacity ua every arc a ∈ A,

2. a list of origin-destination pairs (Oi, Di) ∈ V × V , i = 1, . . . ,K,

3. a time horizon [T ] = {1, . . . , T}, and

4. for every arc a ∈ A a set R(a) ⊆ A of arcs that are reachable from a. We assume that a ∈ R(a) for all
a, i.e. it is always an option to stay at the current arc. Natural choices for R(a) could be:

• R(a) = A, i.e. the travel time of the resource is negligible,

• R(a) = {a′ ∈ A : a′ is adjacent to a} (Two arcs are adjacent if they share a node)

• R(a) = {a′ ∈ A : dist(a, a′) 6 r} for some positive integer r, where dist(·, ·) is an appropriately
defined distance function on the arc set.

The basic idea is that in each period we are sending flows from the origins to the destinations, and sending flow
along an arc consumes an inventory which then has to be replenished by a resource which moves from an arc
a to an arc in R(a) between two consecutive time periods. There are two rates describing how the inventories
of arcs change. The wear rate ρw measures the decrease of the inventory for each unit of flow that is sent along
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an arc a, and the repair rate ρr measures by how much the inventory of an arc increases when the resource
occupies the arc for one time period. Without loss of generality, we scale everything such that ρw = 1. The
interaction between the capacities and the resource are governed by the following rules:

1. If the inventory of an arc is empty then no flow can be sent along the arc.

2. If the resource occupies arc a in period t then it is an option to increase the inventory by ρr.

3. If in period t the resource adds a positive amount to the inventory of arc a, then no flow can be sent
along arc a in period t.

4. If the inventory of an arc is not empty and there is no resource doing maintenance on that arc, then the
flow on the arc can be positive.

5. In period t the inventory of arc a decreases by ρwxat = xat, where xat is the flow on arc a in period t.

6. The flow on arc a at period t cannot exceed the minimum of ua and the inventory of arc a at period t−1.

We introduce the following decision variables:

1. Continuous flow variables xakt for a ∈ A, k ∈ [K], t ∈ [T ]

2. Continuous inventory variables sat for a ∈ A, t ∈ [T ] (initial inventory values sa0 are part of the input)

3. Binary variables zat indicating that the resource is on arc a in period t (the initial conditions are given
by za0 = 1 for a unique arc a, and za′0 = 0 for all a′ ∈ A \ {a})

4. Binary variables yat indication the the resource makes a delivery to arc a

5. Bookkeeping variables θkt for k ∈ [K], t ∈ [T ] (the total flow of commodity k in period t)

The problem can be formulated as follows.

Maximise
T∑
t=1

K∑
k=1

θkt subject to (1)

∑
a∈Nout(i)

xakt −
∑

a∈N in(i)

xakt =


0 if i 6∈ {Ok, Dk}
θkt for i = Ok

−θkt for i = Dk

for i ∈ V, k ∈ [K], t ∈ [T ], (2)

K∑
k=1

xakt 6 ua (1− yat) for a ∈ A, t ∈ [T ], (3)

yat 6 zat for a ∈ A, t ∈ T (4)∑
a∈A

zat = 1 for a ∈ A, t ∈ [T ], (5)

za,t−1 6
∑

a′∈R(a)

za′t for a ∈ A, t ∈ [T ], (6)

sat = sa,t−1 −
K∑
k=1

xakt + ρryat for a ∈ A, t ∈ [T ], (7)

xakt, sat, θkt > 0 for a ∈ A, k ∈ [K], t ∈ [T ], (8)
yat, zat ∈ {0, 1} for a ∈ A, t ∈ [T ]. (9)

The objective (1) is to maximize the total throughput. Constraints (2) and (3) are flow conservation and
capacity constraints, respectively. Constraint (4) ensures that maintenance on arc a at time period t occurs
only if the resource occupies that arc at that period. Constraints (5) and (6) captures the movement of the
resource. Constraint (7) ensures inventory balance at each arc. Finally, constraints (8) and (9) specify the
domain of decision variables.
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3 SINGLE PATH CASE

Definition 1. For x ∈ R let x+or (x)+ denote max{0, x}.

Problem 1. Solve the original problem (1)–(9) for the case that K = 1, R(a) = A for all a ∈ A and the
network is a single O −D path.

Observation 1. In the single path case, for all t ∈ [T ] and all a ∈ A, yat = 1 =⇒ θt = 0.

Observation 2. In the single path case, without loss of generality we can assume ua = u for all a ∈ A.

We assume that the arcs in the set A = {a1, · · · , am} are indexed according to the order in which they are tra-
versed on the path, and for simplicity we write yit and sit for yait and sait, respectively. Using Observations 1
and 2, the single path problem, denoted by SINGLEPATHMTCSCHED, can be formulated as follows:

Maximise
T∑
t=1

θt subject to (10)

θt 6 uz̄t for t ∈ [T ], (11)

z̄t +
m∑
i=1

yit = 1 for t ∈ [T ], (12)

sit = si,t−1 − θt + ρryit for t ∈ [T ], i ∈ [m], (13)
θt, sit > 0 for t ∈ [T ], i ∈ [m], (14)
yit, z̄t ∈ {0, 1} for t ∈ [T ], i ∈ [m]. (15)

We also introduce `i as the number of maintenance periods for arc ai ∈ A:

`i =
∑
t∈[T ]

yit i = 1, . . . ,m.

Remark 1. For every feasible solution, `1 + · · ·+ `m 6 T .

Lemma 1. Let (θ, y, s, z̄) be a feasible solution for the problem SINGLEPATHMTCSCHED with objective
value Z. Then

Z 6

(
T −

m∑
i=1

⌈
(Z − si0)+

ρr

⌉)
u.

Proof. Using constraint (13), for each i ∈ [m] we have:

Z =
∑
t∈[T ]

θt = si0 + ρr
∑
t∈[T ]

yit − siT 6 si0 + ρr
∑
t∈[T ]

yit,

which implies that for each i ∈ [m],∑
t∈[T ]

yit >

⌈
(Z − si0)+

ρr

⌉
.

Summing over i, we obtain
m∑
i=1

∑
t∈[T ]

yit >
m∑
i=1

⌈
(Z − si0)+

ρr

⌉
. (16)

Now

Z =
∑
t∈[T ]

θt
(11)
6 u

∑
t∈[T ]

z̄t
(12)
= u

∑
t∈[T ]

(
1−

m∑
i=1

yit

)
= u

T − m∑
i=1

∑
t∈[T ]

yit


(16)

6

(
T −

m∑
i=1

⌈
(Z − si0)+

ρr

⌉)
u.
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Lemma 2. Let Z be an integer with

Z 6

(
T −

m∑
i=1

⌈
(Z − si0)+

ρr

⌉)
u.

Then there exists a feasible solution (θ, y, s, z̄) for the problem SINGLEPATHMTCSCHED with objective value

T∑
t=1

θt = Z.

Proof. Let `i = d(Z − si0)+/ρ
re, K = bZ/uc and L = `1 + · · ·+ `m. The assumption in the lemma can be

written as Z 6 (T − L)u, and consequently Ku 6 Z 6 (T − L)u, which implies

L+K 6

{
T if Z = Ku,

T − 1 if Z > Ku.

Now we can define a feasible solution with objective value Z as follows.

θt =


0 if 1 6 t 6 L,

u if L+ 1 6 t 6 L+K,

Z −Ku if t = L+K + 1,

0 if t > L+K + 2,

t = 1, . . . , T

z̄t =

{
0 if 1 6 t 6 L,

1 otherwise,
t = 1, . . . , T

yit =

{
1 if `1 + · · ·+ `i−1 + 1 6 t 6 `1 + · · ·+ `i,

0 otherwise.
i = 1, . . . ,m, t = 1, . . . , T

Note that the values for the sit for t > 1 are determined by these values and (13).

Combining Lemmas 1 and 2, we obtain the following proposition.

Proposition 1. In the single path case with R(a) = A, the optimal objective value is

Z∗ = max

{
Z :

(
T −

m∑
i=1

⌈
(Z − si0)+

ρr

⌉)
u > Z

}
.

Corollary 1. Problem (10)–(15) always has an optimal solution (θ∗, y∗, z̄∗) such that for some L,

z̄∗t =

{
0 for 1 6 t 6 L,

1 for L+ 1 6 t 6 T.

Corollary 2. Let ` = (`i)16i6m ∈ Z>0 be a vector with `1 + · · ·+ `m 6 T , and consider the problem (10)–
(15) with the additional constraints∑

t∈[T ]

yit = `i for all i ∈ {1, . . . ,m}.

The optimal objective value for this problem is

min

{
(T −

∑
a∈A

`a)u, min
16i6m

si0 + `iρ
r

}
.

Corollary 3. In order to solve a single path case with R(a) = A, it is sufficient to solve problem (17)–(21).

Maximise Z subject to (17)
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Z 6

(
T −

m∑
i=1

`i

)
u (18)

Z 6 si0 + `iρ
r for i ∈ [m], (19)

Z > 0 (20)
`a ∈ Z≥0 for i ∈ [m]. (21)

Algorithm 1 is based on Proposition 1 to solve single path cases with R(a) = A to optimality. It uses binary
search to find the optimal value for the total flow, Z∗, and the number of times that each arc should be visited
for maintenance, `∗i for i ∈ [m]. Let K∗ = bZ∗/uc and L∗ = `1 + · · · + `m. After finding Z∗ and `∗a, the
following is going to be an optimal solution:

θ∗t =


0 for 1 6 t 6 L∗,

u for L∗ + 1 6 t 6 L∗ +K∗,

Z∗ −K∗u for t = L∗ +K∗ + 1 (if L∗ +K∗ + 1 6 T )

0 otherwise.

z̄∗t =

{
0 for 1 6 t 6 L∗,

1 otherwise.

y∗it =

{
1 for `∗1 + · · ·+ `∗i−1 + 1 6 t 6 `∗1 + · · ·+ `∗i ,

0 otherwise.

Algorithm 1 Solving single path case with R(a) = A, finding Z∗ (SPZ)
1: Input: (sa0, u, ρr, T )
2: ZL = 0, ZR = Tu

3: if
(
T −

∑
a∈A

⌈
(ZR−sa0)+

ρr

⌉)
u > ZR then

4: Z∗ = ZR = Tu, `∗a = 0. return (`∗a, Z
∗).

5: else
6: while ZL + 1 6= ZR do
7: ZM =

⌈
ZL+ZR

2

⌉
8: if

(
T −

∑
a∈A

⌈
(ZM−sa0)+

ρr

⌉)
u > ZM then

9: ZL = ZM
10: else
11: ZR = ZM
12: Z∗ = ZL, `∗a =

⌈
(ZL−sa0)+

ρr

⌉
. return (`∗a, Z

∗)

Example 1. Table 1 shows all steps in Algorithm 1 for solving the network shown in Figure 1 withR(a) = A,
u = 10, T = 7 and ρr = 9. According to the table, in the first five periods the resource works on the arcs (2
periods on arc 1, 1 period on arc 2, 1 period on arc 3 and 1 period on arc 4). At time periods 6 and 7, 18 flow
can be sent from the origin to destination.

O D1 2 3
s10 = 2 s20 = 9 s30 = 17 s40 = 12

Figure 1: A single path network.
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Step ZL ZR Calculation

0 0 70 −210 < 70

Step ZL ZR ZM Calculation

1 0 70 35 −50 < 35
2 0 35 18 20 > 18
3 18 35 27 −20 < 27
4 18 27 23 −10 < 23
5 18 23 21 0 < 21
6 18 21 20 10 < 20
7 18 20 19 10 < 19

`∗1 `∗2 `∗3 `∗4 Z∗

2 1 1 1 18

4 CONCLUSION

In this paper, we introduced a new combinatorial optimization problem called the network maintenance prob-
lem. We presented a mixed integer linear programming formulation for this problem. The formulation can be 
solved using any standard linear solver. Under some simplifying assumptions, we were able to solve to opti-
mality the special case of the problem having a single path network. We presented a binary search algorithm 
which finds an optimal solution of the single path case, efficiently. A promising direction for future research is 
to develop efficient algorithms to solve the general case of the p roblem. Developing strong valid inequalities 
for the proposed mathematical formulation can also be a good future research direction. The network mainte-
nance problem introduced in this paper may be extended in different ways such as considering upper bounds 
on the inventories, multiple resources, resource travel times, etc.
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