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Abstract: This work describes an optimisation method based on genetic algorithms to generate train schedules 
for the rail network under the coordinating responsibility of the Hunter Valley Coal Chain Coordinator in NSW. 
The network connects 3 coal export terminals to 31 load points and haulage distances can extend up to 364 km. 
The scheduling problem consists of finding a high-quality schedule for trains travelling from a terminal to a 
load point and back, respecting all constraints imposed by the network itself and the operational environment. 
Those constraints refer to a mix of single and double tracks, limited parking facilities along the tracks, loading 
capacity at the load points, as well as minimum spacing (headway) between trains.

The decision variables include the travel speeds at each section of the network and the amount of dwell time 
for each train at each parking facility along the route. To test our approach, a simplified model of the HVCCC 
network, with 3 terminals, 11 load points and 40 sections was used. The objective function is the minimization 
of the total travel times. A lower bound for that objective function was calculated with the trains travelling at 
maximum speed, and no constraints being applied.

Three scenarios were tested, with 15, 30 and 60 trains; and with different configurations of the genetic algo-
rithm. The results are presented in the form of a table with a number of statistics related to the solutions found, 
namely average travel time (with standard deviation), plus shortest and longest travel times, and CPU times. 
Relative to the lower bounds, the gaps for the average trip time range between 14% and 50%, depending of 
the problem size. These initial results are encouraging, considering the complexity of the system, the number 
and complexity of constraints, and the CPU time required by the method. Finally, in the discussion section we 
indicate possible paths of future research.
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1 INTRODUCTION

The Newcastle Port is located in New South Wales, Australia, and is the largest coal export facility in the world
by volume. In 2016, there were over 22,000 train trips, from 35 mines in the Hunter region into three shipping
terminals to serve over 1,400 vessels, for a total exported volume of over 160 million tons of coal. The Hunter
Valley Coal Chain Coordinator1 (HVCCC) is responsible for coordination this effort, from rail transportation
to stockpiling and ship loading. With the overall goal of throughput maximization, the coordination involves 11
producers in the Hunter region, two track owners/operators and two terminal operators, and aims at producing
a medium term production plan approved by all stakeholders.

One of the critical sub-problems associated to the Hunter coal supply chain is the coordination of train travels.
Each train movement is associated to one or more orders, i.e. one or more ships scheduled to berth at given
times in the near future. Those orders refer to specific types and quantities of coal that must be sourced from
the nearby mines. A typical trip will start with an empty train leaving one of the terminals, refueling at a
service station, heading to a load point, loading, and heading back to a terminal, into one of its dump stations.
Decisions about the type and size of the train, departure terminal, destination load point and destination termi-
nal are all made beforehand, based on the orders to be fulfilled and available resources. That information is the
main input to the scheduling problem. Currently, the task of scheduling train trips is done manually by a team
of engineers. This process is time consuming and inefficient, and leads to the under-utilisation of resources.

Train scheduling is a well-known problem in the area of logistics and there are many variants. The types of
problems are closely related to the type of network and the task at hand. In intra-city networks, like those
found in urban centres, there are two problems to be solved: routing and scheduling. Routing problems arise
in highly connected networks, where there are several possible routes between any two locations (Gendreau
et al. [2015]). In inter-city networks, however, sometimes there is only one route between locations – or at least
one route is clearly preferable over the other possibilities – thus eliminating the need for routing. This is the
case of the network addressed in this study. From the terminals to any of the load points in the Hunter region
there is only one path to be followed and thus the only relevant problem is the scheduling of the individual
train travels. This problem has been visited recently in the context of high-speed trains in China (Yang et al.
[2016]), and the authors used a mixed integer linear programming model. The network was relatively small,
with 20 sections, and all sections were double track. The method achieved optimal results for problems with
up to 48 trains in less than 10 hours.

In 2014, Upadhyay and Bolia [2014] addressed a similar problem in the context of dedicated freight railway
corridors in India. The authors proposed a mathematical model and a Simulated Annealing (SA)-based heuris-
tic. The model failed to solve any of the real-life sized problems (i.e. with more than 40 sections) and the SA
found good solutions in around two minutes. The complete network was a bit larger, with 60 sections, and all
sections were double track, as well.

Another relevant work to our study has used genetic algorithms and artificial neural networks to solve the
scheduling problem for passenger trains in single tracks (Dundar and Sahin [2013]). The network was also
small, with 18 sections, and for problems with up to 17 trains (8 travelling upstream and 9 travelling down-
stream), the method took 286 seconds to converge. The method is relevant as it takes into account single
tracks and the conflicts that arise when trains meet-pass each other. A second study that addresses single-
track networks, deadlocks and meet-pass constraints is Li et al. [2014]. In this work, the authors consider a
small network with 9 single track sections and 8 meet-pass facilities. The mathematical model finds feasible
solutions within the time limit of 5 hours, with optimality gaps in the order of 10%-40%.

Compared to the studies described above, the scenario derived from the HVCCC operations is considerably
more complex, with additional constraints for loading capacity and also topologies that are particular to this
network (e.g. balloon loops containing one or more load points). Given the additional complexity and also
that the network has a size comparable to the study by Upadhyay and Bolia [2014], the use of a metaheuristic
is arguably the most appropriate approach. For a recent overview of train routing and scheduling problems
and their variations, we refer the reader to the recent book Wang et al. [2016]. Next we present a detailed
description of the HVCCC network and problem at hand.

1http://www.hvccc.com.au/
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2 PROBLEM DESCRIPTION

2.1 HVCCC network

The HVCCC network connects 3 coal export terminals to 31 load points and extends for 380 km into the
Hunter region. In is composed of a mix of single and double track sections, with double tracks extending from
the terminals all the way until approximately 120 km inland. All other sections off the main line are single
track, with passing loops available in regular intervals. Passing loops can accommodate different train lengths
and they come in various configurations, with up to 3 parallel tracks. The load points are located close to the
mines. Some of them are just off the main line, connected by a single track section, whereas others require
long distances to be traversed once the train leaves the main line. Another important aspect is that all load
points have a baloon loop configuration. That is, when train comes from the access track, it enters the loop
in a predefined direction. At a certain point it slows down so the loading process can take place, and once
it is finished, the train accelerates back into the same access track, now travelling in the opposite direction.
Also, trains can wait both before and after the loading process took place, but no overtaking is allowed as
load points do not have parking facilities. The real network also has a number of other infra-structure, such
as refueling and maintenance stations; connecting tracks between the double tracks in regular intervals – so
a train can overtake another on a double track without the use of passing loops; and balloon loops with 2
and 3 load points, plus parking facilities, i.e. the topology is very domain-specific. For more information
about the network and the logistics of the coal transportation, we refer the reader to Frazer and Sutherland
[2010] and ARTC [2016]2. Most of these aspects are considered in our model, but some will be left for future
research. Next, we describe the problem addressed in this study.

2.2 Model description

In this section we describe the input, decision variables, objective function and constraints of the train schedul-
ing problem.

Input parameters. The problem receives the following information as input:

• Arcs (or sections): Information about the length of each arc, single/double track status and adjacent arcs.

• Nodes: Information on whether the node represents a terminal, a load point or a passing loop. If the
node represents a passing loop, it will also contain the number of parallel tracks and their lengths.

• Jobs/Trains: A list of jobs containing origin terminal node, load point node and destination terminal
node, plus loading time. In addition, the model receives information about the train assigned to each
job, i.e. length, maximum speed and ready time. By design, the number of jobs is the same as the
number of trains.

Decision variables. Given the input parameters, each train is assigned a path, going from origin node to load
point node, and finally to the destination node. This path will be used by the algorithm when determining the
decision variables values. Notice that since the network has a tree structure, there is only one possible path for
each train, and thus routing decisions are not part of the problem.

• Speeds: Speed of each train in each section of the respective paths. Section speeds can not be less than
half of the maximum speed of the train.

• Wait times: Wait time in each passing loop. If a decision is made to wait at a given passing loop, that
wait time can not be less than 10 minutes, to allow for engine re-start procedures to take place. There is
no limit for maximum wait time.

Objective function. The objective is to minimize the total travel times. That is, the interval between the
train’s ready time and the time it concludes its trip, arriving at the destination terminal.

Constraints. The problem is subject to several constraints related to the operational procedures observed by
HVCCC and network topology:

2http://www.artc.com.au/uploads/ARTC-2016-25-Hunter-Valley-Corridor-Capacity-Strategy-Final-Oct-2016.pdf
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• Meet-pass: It is prohibited to have two trains travelling in opposite directions within the same single
track section. In our model, a section is defined as a length of track without passing loops, thus, by
construction, passing loops are located between adjacent sections only. For double track sections, there
are no meet-pass constraints.

• Overtaking: Overtaking is only allowed if the train being overtaken is parked in a passing loop.

• Headway: Trains need to maintain a 5-minute headway at all times when travelling in the same direction.

• Loading capacity: Only one train can be loaded at a time in a load point.

• Load point topology: All load points have a balloon loop topology, and each balloon loop contains one
load point. All load points have a passing loop in the access section, thus allowing waiting/overtaking.

2.3 Solution

A feasible solution to the problem specifies the speed of each train in each section of the network, and the wait
times, in a way that no constraints are violated. In addition, a good quality solution will have a low objective
function value, ideally with trains travelling at high speeds and stopping very few times. For illustrative
purposes, in Figure 1 we show a typical solution for an example network with 2 terminals, 2 loadpoints and
7 nodes in total. All sections have single tracks. Ten trains have been scheduled in total and the diagram
shows the dynamics of the system, with wait times, loading times and meet-pass situations occurring without
collisions. The caption of Figure 1 describes how the diagram should be interpreted.
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Figure 1. Diagram of a train schedule graph as generated by the method. The diagram show 2 terminals, 2 load 
points and 6 sections: (T erminal 1 ↔ Node A), (T erminal 2 ↔ Node A), (Node A ↔ Node B),(Node B 
↔ Node C), (Node C ↔ Loadpoint 1) and (Node C ↔ Loadpoint 2). All sections have single tracks and 
all nodes have passing loops. The thick, dashed lines at the terminals indicate loading operations, whereas the 
thin lines above and below the horizontal gridlines are wait times at passing loops. The correct way to read the 
diagram is as follows, using trains 1 and 4 as examples. Train 1 departs terminal 1 at 00:00, passes through 
nodes A, B and C without stopping, and reaches load point 1. It loads for 30 minutes and then goes back to 
terminal 1 without stopping. Train 4 departs from terminal 2, stops at NodeB to allow trains 1 and 2 to meet-
pass, continues to load point 1, loads and goes back to terminal 1. Trains 7 and 10 have wait times at terminal 
1, which means they depart not at their ready times, but a few moments later to avoid collisions with the 
returning trains 4 and 7, respectively.

3 METHODOLOGY

In order to solve the train scheduling problem we use a genetic algorithm (Goldberg and Sastry [2010]) to 
search through the space of train speeds at each section, plus a greedy heuristic to eliminate unfeasibilities.

3.1 Genetic Algorithm

Genetic Algorithms (GA) are a population-based optimisation method. As with any metaheuristic, there is 
no guarantee that the optimal solution is found at all times, but a well-designed GA will achieve high-quality 
solutions in very short CPU times, making them a suitable alternate approach when exact methods are too 
time-consuming (Goldberg and Sastry [2010]). The characteristics of the GA implemented are as follows:

Representation. The GA uses a chromosome composed of integer values representing train speeds at each 
section. Each chromosome contains several arrays – one array per train – and the value in array i, position j, 
refers to the speed of train i at section j of its path.
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Crossover and mutation. The crossover follows a Uniform Crossover (UX) strategy, i.e. for each position of
the child’s chromosome, the inherited value is chosen from the same position in one of the two parents. Then,
the value copied goes through mutation, with a 5% probability of increasing by one and a 5% probability of
decreasing by one. This is a relatively high level of mutation and aims at reducing premature convergence of
the population.

Offspring acceptance. Any offspring with a better fitness value than one of its parents replaces the least fit
parent. If the offspring is worse than both parents, it is discarded.

Population. Population size directly impacts diversity and computational complexity. Allowing more indi-
viduals to evolve will likely improve the quality of the result, but at the cost of larger CPU times. In our tests,
we considered populations with 10, 20 and 50 individuals.

Fitness. The fitness of a solution is calculated using the speeds in its chromosome. Starting from the 1st

train, and all the way to the last one, the schedule is calculated with the trains travelling at their corresponding
speeds for each section, immediately loading at the load point, and then returning to the destination terminals.
It is clear that this procedure will lead to several unfeasibilities. Those unfeasibilities are solved by a greedy
heuristic procedure. The fitness itself is the inverse of the objective function value, presented in Section 2.2.

3.2 Greedy heuristic

This heuristic aims at eliminating unfeasibilities related to the constraints listed under Section 2.2 and is
described next:

Algorithm 1: Greedy algorithm to remove unfeasibilities
1 foreach (train) do //main loop
2 while checkLoadingConflict(train,terminal) == true do //checks if more than one train is loading at the terminal.

3 increaseWaitTime(train,terminal);

4 //loading time is now feasible for the train. Proceed to check conflicts.

5 foreach (section ∈ trainpath) do //checks each section of the path for unfeasibilities.

6 if (checkConflicts(train,section) == true) then //unfeasibility found
7 do
8 waitT imeChanged = true;
9 do

10 increaseWaitTime(train,section);
11 if (checkPassLoopConflict(train,section) == true) then //Passing loop is beyond its maximum capacity.

12 removeWaitTime(train,section); //return to the original wait time value.

13 section = previous(section); //go to the previous section.

14 increaseWaitTime(train,section); //increase the wait time at the previous section.

15 newUnfeasibilityCreated = false;
16 foreach [(section′ > section) ∧ (section′ ∈ trainpath)] do
17 if [(checkConflicts(train,section′) == true) ∨ (checkPassLoopConflict(train,section′) == true) ∨

(checkLoadingConflict(train,terminal) == true)] then
18 newUnfeasibilityCreated = true; //new unfeasibility was created at section’.

19 while (newUnfeasibilityCreated == true) //no wait time change in the last checkout pass;
20 while (waitT imeChanged == true) //no wait time change in the last checkout pass;

The greedy algorithm works by checking and adjusting the schedule, one train at a time. For each train, it
starts by checking if there is a loading unfeasibility, i.e. if the train is loading at the same time as another, at
the same load point (line 2, Algorithm 1). If that happens, then wait times are added at the load point node
until the unfeasibility is removed. Then, the procedure moves on to checking other conflicts, i.e. meet-pass in
single tracks for trains travelling in opposite directions and headway distance for trains travelling in the same
direction. That is achieved by checking each section in the train’s path for conflicts with other trains (line 5).
When a conflict is found (line 6), the wait time before entering the current section is increased until the conflict
is removed. At this stage three problems might arise. First, having an extra train stopping at the passing loop
might violate its capacity, and in this case the algorithm moves the wait time to one of the previous sections
(lines 13 and 14). Second, while adding wait time might eliminate an existing conflict, other conflicts might
be created in the later stages of the schedule. Finally, adding wait times in the first phase of the trip, i.e. from
terminal to load point, might create loading unfeasibilities. That is the reason for the additional checking done
in line 17. Once the schedule for the current train becomes feasible the method proceeds to the next train. That
is, the algorithm is greedy from the sequence of trains perspective, with limited back-tracking occurring when
wait times have to be added to a previous section due to a passing loop unfeasibility.
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3.3 Iterative scheduling

The search space for the GA and the greedy heuristic grows quickly with the number of trains, thus impacting
total CPU time. To address that issue, the GA iterates from the first to the last train, using a moving window,
thus operating over a reduced search space in each iteration. For a window size of k, the GA will only schedule
trains [i − k, i + k] in each iteration, where i is the index of the current iteration. Trains outside that interval
will either have their schedule fixed (if they have already been scheduled in a previous iteration), or have not
been scheduled, yet (and thus do not influence the objective value at the current iteration). In the computational
tests we compare the method’s performance with different window sizes.

4 COMPUTATIONAL RESULTS

The algorithm was tested on a scaled-down version of the network described in Section 2.1, with 3 terminals,
11 load points and 40 sections. A lower bound is used for comparison purposes, calculated with the trains
travelling at maximum speed and no constraints in the system. Next, we present a series of results for different
sizes of problems (up to 60 trains), sizes of population for the GA (up to 50 individuals), and window sizes
(up to 5). In all tests, passing loops along the network can only hold one train, whereas there is no maximum
capacity for passing loops located at terminals and load points. All constraints from Section 2.2 are considered.

The results in Table 1 indicated that the GA is able to address problems with 60 trains in under 4 minutes
(tests were run in an Intel i7 system). Relative to the lower bounds for the instances with 15, 30 and 60 trains,
the gap for the average trip time is approximately 14%, 29% and 50%, respectively. Even though those seem
to be high numbers, it is worth noting that the lower bound is based on a very naive procedure, and without
any constraints imposed. Under that light, the results are indeed positive, considering the complexity of the
system and the CPU time required by the method. As expected, larger populations have a positive impact on
the results; and the best window size was 5 – the impact on CPU time was small, but the quality of solutions
was considerably better compared to window sizes of 1 and 2.

4.1 Conclusions and Recommendations

This work addressed a train scheduling problem that arises in the context of the Hunter Valley Coal Chain
Coordinator operations. The problem is more complex and considerably more constrained that others found
in the literature. A genetic algorithm was implemented focusing on the train speed in each network section,
with the unfeasibilities being eliminated through a greedy algorithm that adds wait times at passing loops for
individual trains. The method runs quickly, with high quality solutions being found in less than 4 minutes.
Results were compared against a lower bound, calculated with the trains travelling at maximum speed, and no
constraints. The results are encouraging and additional constraints will be added to the method in the future.
Those constraints will deal with limited (and absence of) parking facilities at terminals and load points, and
refuelling operations. Another topic of further investigation is the iterative aspect of the method and the use
of windows. A third line of research will be the development of a post-processing procedure to eliminate
redundant wait times introduced by the greedy algorithm, aiming at shorter trips and a more realistic schedule
that can be used by HVCCC’s modelling team.
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for a direct comparison with the lower bound values.
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