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Abstract: Optimising the raw water intake selection is a critical task for multiple source water treatment 
plants, as this depends on, among others, water quality, pumping costs, and safety considerations. In case of 
the Mudgeeraba treatment plant in South-East Queensland (Australia), the raw water can be withdrawn by 
gravity from the small Little Nerang dam, or pumped from the larger Hinze dam. Intake towers with different 
gates also allow for the plant operators to withdraw the raw water from different depths. Often though, 
decision on the optimal intake location is taken based on operators’ experience, without a real scientific 
method relying on in-depth considerations on e.g. current water quality at multiple locations and electricity 
costs. Nevertheless, the large amount of data collected daily at the treatment plant, and at higher frequency in 
the two reservoirs by remote vertical profilers, provides an opportunity to link water quality with treatment 
costs and provide numerical evidence for the operators to take a more informed decision. 

As a consequence, a number of data-driven, chemical and mathematical models linking raw water quality 
with required chemicals dosages, as well as a model estimating the pumping costs, were developed. As a 
consequence, it was possible to predict the overall daily variable treatment costs based on raw water quality. 
Given that the water quality is monitored in real time in the two reservoirs for the whole water column, it was 
also possible to provide advice on a daily basis on which withdrawal depth and reservoir would lead to the 
lowest treatment cost. 

By running the model with historical data, it was found that for almost any given day, withdrawing water 
from Little Nerang dam would have been a cheaper option due to the associated energy costs (i.e. no 
pumping required) being much lower than potential extra treatment costs due to poorer raw water quality; 
however, traditionally operators prefer to keep it as a backup reservoir in cases of, for instance, power 
outages and inability to use the Hinze dam pumps. Given that Little Nerang dam, despite smaller, would be 
able to provide enough water for few months, an increased use of this water source was still recommended, 
especially around wet seasons. Based on this, a medium-term storage volume prediction model was 
developed, able to forecast the risk of depletion and spill for Little Nerang dam for the upcoming six weeks 
based on, among others, proposed daily withdrawal rates and weather forecasts. In this way, plant operators 
would be able to plan the future withdrawals in a way to reduce the costs, but also to avoid excessive spill or 
depletion risks; thus effectively achieving a better planning and management of water treatment operations. 

Despite the predicted benefits, it is critical to engage with the relevant stakeholders and potential end-users in 
order to incentivise the deployment of the end products of research projects; often, lack of proper 
communication and engagement can lead to the majority of the research outcomes to be largely wasted. This 
can be a major challenge with water planning and management research. For this research project, the 
engagement process started during the model development stage, by organising meetings and presentations to 
show the status of the model and ask for feedback and suggestions to improve it. In addition, a graphical user 
interface was developed, whose graphical contents (e.g. output charts) were decided based on operators’ and 
managers’ suggestions.  

Finally, given that such interface was still underutilised because it was installed only on a specific computer 
at the treatment plant (while several operators usually spend most of their working hours conducting field 
work), a smartphone application with similar contents to the computer interface was also developed. This can 
finally lead to a regular deployment of the optimisation models, therefore transforming the research outputs 
in real quantifiable benefits for the water utility. 

Keywords: Decision support system, smartphone application, water treatment optimisation 

22nd International Congress on Modelling and Simulation, Hobart, Tasmania, Australia, 3 to 8 December 2017 
mssanz.org.au/modsim2017

1780



Bertone et al., Optimising water treatment operations with prediction modelling and smart technologies 

1. INTRODUCTION 

Ensuring that high-quality, safe drinking water is delivered to the consumers is pivotal for any bulk water 
supplier; drinking water treatment plants have the task to achieve such objective by withdrawing raw water 
from a number of potential sources (e.g. lakes, reservoirs, rivers), processing it, and delivering the treated 
water to the distribution system. Several treatment stages are typically present in any treatment process 
(Kawamura, 2000), and maximising the overall treatment efficiency is an intricate task. One of the main 
challenges is to dose the correct amount of chemicals, based on raw water quality, in order to achieve treated 
water quality that complies with the standards fixed by the regulators. This is usually done through jar tests 
based on the expected raw water quality characteristics. 

Some treatment plants, such as the Mudgeeraba water treatment plant (WTP), has the capacity to withdraw 
raw water from multiple sources. This provides more resilience and the potential of selecting the location 
with the best water quality in order to facilitate the treatment process. It is also possible to develop models 
which can provide an estimate of the required doses for certain chemicals based on water quality, and related 
costs (Abdullahi, 2013), to help operators take a decision on the optimal withdrawal location. When 
developing such models though, it is critical to engage with stakeholders, as operators might not be interested 
in understanding a complicated model that would not lead to direct benefits for them, and also because there 
might be other factors other than costs, which would push the decision-makers not to totally rely on the 
model’s outputs. For the Mudgeeraba case-study, for instance, stakeholder engagement allowed to 
understand that operators would rarely use one of the two reservoirs despite potentially better water quality, 
due to some perceived risks (e.g. potential depletion) which scientifically and mathematically seemed 
unlikely or at least overestimated. 

As a result, the overall objectives of this research were: 

1. To collect and analyse data for the Mudgeeraba WTP and the two connected reservoirs, namely 
Hinze dam and Little Nerang dam 

2. To develop a model able to quantify the required chemicals dosage and overall variable treatment 
costs based on water quality, and to subsequently link such model to an algorithm able to identify 
the most economical raw water source (i.e. reservoir/depth) 

3. To develop medium-term storage volume prediction models for the two reservoirs to quantify 
depletion and spill risks, based on planned withdrawal amounts (consequence of intake selection 
model outputs) 

4. To develop graphical user interfaces (GUI) and a smartphone application to facilitate the models’ 
deployment by the WTP operators. 

As most of the findings of Objectives #1, #2 and #3 have been discussed elsewhere (Bertone et al., 2017a; 
Bertone et al., 2017b), this paper mainly focuses on Objective #4. 

2. METHODS 

2.1. Research location 

The Mudgeeraba WTP (Figure 1) is the second largest WTP in the Gold Coast region, South-East 
Queensland Australia, after the Molendinar WTP which withdraws water from the lower intake of Hinze 
dam. The Mudgeeraba WTP has a standard water treatment train with two conventional clarifiers and 16 
mono media sand filters (Rogers et al., 2008). Raw water can be taken from the upper intake of Hinze dam 
(HUI, Fig. 1), through three electric pumps (74 ML/day maximum that can reach the WTP); the other 
withdrawal location is Little Nerang dam (LND, Fig. 1). The two offtakes towers (5 gates in LND, 9 gates in 
HUI) are, respectively, 3km and 8km away from the WTP. Hinze dam has also another intake tower, which 
redirects water to the Molendinar WTP. 

Hinze dam is the main source of raw water for the Gold Coast region, and it has a maximum capacity of 
310,700 ML, while Little Nerang dam has a maximum capacity of only 6,705 ML – which however, 
assuming no rain, is enough for supplying raw water to the WTP for three months (Hamilton, 2015). Given 
its small capacity and the fact it is rarely used for prolonged periods of time, LND often spills during wet 
weather events. Hinze dam on the other hand, is a much larger, stable reservoir that destratifies only in winter 
(Bertone et al., 2015b), creating some water quality issues (e.g. manganese, Bertone et al. (2015a)) in the 
epilimnion, which has otherwise typically acceptable water quality, thus allowing for regular withdrawal 
from this top layer. 

1781



Bertone et al., Optimising water treatment operations with prediction modelling and smart technologies 

 

Figure 1. Location of Mudgeeraba WTP and the two intake towers in HUI and LND 

2.2. Intake optimisation model development 

Historical data were collected from a number of sources. Data included: daily chemicals dosages; raw water 
quality (WQ) parameters such as turbidity, pH, dissolved oxygen, manganese, water temperature, water 
colour, and alkalinity; reservoir water quality (weekly lake sampling and hourly vertical profilers data); and 
daily flow from LND and HUI. The period were data was consistently available was 2010-14. Data were 
analised with self-organizing maps (Kohonen, 1998) and linear/nonlinear regression approaches. Operators 
were engaged to understand and justify the correlations found, and a number of models (data-driven, 
chemical, mathematical), sequentially predicting the required amount of each chemical based on the actual 
temporal dosing order (according to plant processes), as well as the variation in water quality (e.g. pH) after 
each step, was developed. Pumping costs were also modelled based on the inflow from HUI. The full 
methodology is presented in Bertone et al. (2016b). A Monte Carlo approach was then applied, where 
100,000 simulations were run to identify the best blend of raw water sources. 

2.3. Medium-term storage volume prediction model 

After the intake optimisation model was developed and validated, it was applied over historical data to check 
what the best intake selection would have been, and it was found that, due to the cheaper intake method (i.e. 
gravity vs. pumps), LND would have represented in several circumstances (i.e. excluding very few occasions 
of much worse water quality, and few long dry periods where its level would have decreased too much if the 
maximum withdraw rate had been applied for a prolonged period) the optimal reservoir selection. As a 
consequence, in order to facilitate a change of mindset whereby the operators are worried of potential 
depletion risk, a model was developed to predict 6 weeks ahead the likely LND volume and related spill and 
depletion risks. As the electricity billing system in place implies that one single daily use of the HUI pumps 
within a month would trigger extremely, proportionally, high fixed charges, this model allows the plant 
decision-maker, towards the end of a given month, to quantify the risk of LND depletion if this was to be 
selected as the only source of raw water.  

In order to develop such model, data were collected from a number of sources, and included historical LND 
water level, river inflow, outflows (e.g. spills, environmental flow, WTP withdrawals). Additionally, the 
Bureau of Meteorology (BoM)’s Seasonal Streamflow Forecasts (SSF), providing the likelihood of certain 
Australian rivers to supply a below-, near- or above-median flow for the upcoming three months, were used 
as a key-input for prediction. A probabilistic, Monte Carlo based approach was deployed also in this 
circumstance. The full methodology is described in Bertone et al. (2017a). Essentially, the inflow amount 
used in each simulation was based on the SSF, i.e. if the SSF predicted a 30% chance of below-median 
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inflow, then 30% of the model simulations would rely on a randomly generated inflow value constrained to 
be below median (based on historical data analysis). 

2.4. Graphical user interface and smartphone application development 

A critical component of any successful applied research project is to make sure the scientific outputs are 
transferred to real-life situation to create a benefit for the stakeholders. Engaging stakeholders since the 
model development stage (e.g. Bertone et al. (2016a)) is critical in order to agree on which outputs would be 
easy to understand and deploy, and therefore on which key features a decision support system (DSS) or a 
GUI should have. If key-stakeholders were not properly engaged throughout the project, a likely outcome 
would be a lack of trust in the model given his complexity although scientifically validated (Rizzoli and 
Young, 1997); this seems to be the case in most DSS development – related projects, with only few of them 
in actual use due to lack of transparency (van Delden et al., 2011). 

In this case, a number of meetings were organised with Mudgeeraba WTP’s operators and managers, to make 
sure the methodology adopted to develop the model was clear, and to obtain input and feedback on the GUI 
design and features; thus ensuring that the final product matched their expectation, needs, and skills 
(McIntosh et al., 2011). Such GUI was developed in a Matlab environment through the Matlab Compiler. 
Inputs entered through the GUI feed the code, which is run through a button of the GUI. A number of output 
charts are then displayed. Figure 2 summarises the methodological process adopted for this project in which 
critical stakeholders were engaged from data collection to GUI development.  

 

Figure 2. Conceptual diagram for models’ development and deployment 

Compared with a Matlab application, an application based on smartphone enjoys more popularity among 
people without engineering knowledge and skills. Hence, based on the developed Matlab GUI, the Research 
Team developed an Android Application to make it more accessible to stakeholders with different 
backgrounds and roles. Firstly, the core algorithm written in Matlab was converted into Java, as Android 
deploys Java as its developing language. The outcome is a Java class taking the same input parameters as that 
of the Matlab GUI, and providing the output of analysed results. Secondly, we implemented an Android 
interface by using AndroidStudio which is the de facto integrated development environment for Android 
applications. To draw the charts for the results, we used a third-party library called MPAndroidChart.  

3. RESULTS 

3.1. Modelling results and performance 

The chemicals dosage prediction models all achieved high accuracy, with alum, polydadmac (i.e. 
polydiallyldimethylammonium chloride) and sodium hypochlorite predictions being the most accurate, lime 
and carbon dioxide predictions slightly underestimating the real values, and sodium hydroxide predictions 
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yielding the lowest accuracy (Bertone et al., 2016b). However, the overall treatment cost was predicted with 
acceptable accuracy (R2>0.7) and, despite still requiring operators to run jar tests for an exact estimation of 
the required dosage, the accuracy of the model is enough to achieve its primary goal, i.e. being able to 
compare and identify, among 14 options (i.e. the 9 gates’ depths of HUI and the 5 gates’ depths of LND), the 
best intake depth.  

The LND storage prediction model was validated under a range of totally different historical conditions (e.g. 
full/dry periods; high/low withdrawal rates; etc.) with the best final model able to identify the correct most 
likely volume interval and the most likely spill risk (i.e. high/low/none) in over 80% of the cases (Bertone et 
al., 2017a). For completeness, a similar model was developed for Hinze dam too; however it is of very 
limited significance to the WTP operators, as its proportionally much (i.e. 46 times) higher storage capacity 
makes a potential depletion risk much more unlikely, or at least less influenced by the comparatively more 
insignificant withdrawal amounts. 

3.2. GUI and smartphone application functionalities 

Figure 3 shows the GUI main screen for both LND and Hinze dam. The inputs required are: the month of the 
year, the current water level, the SSF (a link is provided to the BoM webpage where such forecasts can be 
found), and the planned intake to the WTP (Mudgeeraba WTP only for LND, Mudgeeraba + Molendinar 
WTPs for Hinze dam). The big “simulation” button runs the code, generating the three output charts, namely: 
(1) a histogram showing the predicted distribution of the future storage level, (2) a pie chart displaying the 
risk of spill and (3) a pie chart displaying the probability of the storage level being above or below certain 
thresholds. The thresholds were defined based on operators’ input and hydraulic constraints. 

 

Figure 3. GUI main screen for LND (above) and Hinze dam (below) 
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The relevance of this tool for LND, compared to Hinze dam, is highlighted in the figure, as the simulation 
results are for similar background conditions (i.e., dry conditions, medium initial storage volume, relatively 
high withdrawal rates). It can be noticed from the histogram how the predicted LND volume spans around an 
interval of 15m, while Hinze dam’s is concentrated around 88m above sea level. It can be also seen from the 
pie charts how there is a high chance that LND will be below critical levels (i.e. high depletion risk), while 
Hinze dam would not be considerably affected by one single month of dry conditions and high outflows. 
Such a high chance of low LND capacity is confirmed by the fact that it would not be even possible to 
withdraw the whole proposed daily amount of raw water (i.e. 60 ML) since, due to hydraulic issues (such as 
head loss), only 57.7 ML/day on an average (blue number in Figure 3) could be withdrawn. Based on that, 
the operator can run a new simulation, where a smaller intake amount is proposed, in order to reduce the 
depletion risk to safer levels. 

 

Figure 4. Screenshot for Android Application 

Figure 4 shows a screenshot of the developed Android Application. It takes the same input as that of the 
Matlab GUI. The user could select the month from a handy dropdown menu. All the values are required to be 
provided in order to activate the simulation button to further analyse the data. One advanced feature of the 
Android Application is that it automatically grabs the BoM streamflow forecasts probabilities from the BoM 
website and fill the forms for the user, while the user can still override those values. In addition, as the core 
algorithm was converted from Matlab into Java, the application runs almost instantaneously and in general it 
is much faster than the computer-based Matlab GUI. 

The Android Application has been delivered to the treatment plant operators during winter 2017; during the 
last week of each calendar month, the application is run in order to assess the depletion risk associated with a 
potential decision of withdrawing 100% of the required raw water from LND for the following calendar 
month – in order to avoid the pumping costs associated with withdrawing from HUI. If the risk is deemed 
acceptable, only LND is used for the next calendar month, leading to energy savings of tens of thousands of 
Australian dollars.  

4. CONCLUSIONS 

A number of prediction models were developed in order to optimise treatment operations in a South-East 
Queensland dual source water treatment plant. An intake optimisation model was firstly developed, which 
could calculate the treatment (i.e. chemicals, electricity) costs based on selected reservoir and water quality. 
Secondly, two medium-term water level forecasting models were developed for the two source reservoirs, in 
order to enable the operators to safely select the optimal intake location without incurring in unacceptable 
spill or depletion risks for these reservoirs. 

The models were developed using different methodologies. The overall intake optimisation model was 
developed by combining a number of data-driven, chemical and mathematical models for cost estimation, 
with a final Monte Carlo algorithm deployed to identify the optimal intake location. The 6-week ahead water 
level forecasting models were based on a probabilistic Monte Carlo based approach due to the large inputs 
uncertainty, including BoM weather forecasts. 
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Much effort in this particular study has been dedicated to the models’ deployment aspect. Firstly, a GUI was 
developed, which allows stakeholders to understand and run the model through a user-friendly environment. 
However, a smartphone application was also developed to further enhance the deployment of the model, 
especially by stakeholders and operators spending most of their working day on field. Given that a relatively 
large proportion of water utilities’ staff members work in multiple locations, and thus have a much easier 
access to smartphones compared to computers, there is potential to develop other smartphone applications to 
translate previously completed scientific research work into user-friendly, easily accessible, useful 
information. 

It was estimated that an optimised selection of the raw water intake for the Mudgeeraba WTP, which often 
implies an increased use of the smaller LND, would lead to remarkable monetary savings for Seqwater. Thus 
future work will aim at ensuring the model is regularly used, and such savings achieved.   
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