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Abstract: The Bureau of Meteorology launched a deterministic 7-day streamflow forecast service to the 
public in September, 2015. These streamflow forecasts indicate likely river flow conditions in the coming 
week. The service has been developed mainly to assist river managers in making informed decisions about 
water resources 
management to ensure the 
best use is made, both from 
agricultural and 
environmental perspectives. 
The service currently 
provides daily updates of 
daily volume forecasts to 
the public for 132 locations 
across Australia (Figure 1). 
This paper investigates the 
performance of the 
operational 7-day 
streamflow forecasts at 
targeted 53 locations across 
Australia.  

Evaluating operational 
forecast performance is 
essential to identify forecast 
discrepancies in order to 
improve the service. 
Performance metrics for 
rainfall and streamflow 
were investigated. 
Operational streamflow 
forecasts for more than 90% 
of the selected 53 locations 
exceed a set criterion of positive mean absolute error skill score up to 3-days lead-time. Unreliable or poor 
quality input data was the main cause of suboptimal performance for the remaining 10% of locations. 
Forecast performance for perennial streams is found to outperform those in ephemeral streams. The inability 
of hydrological model structure to cope with complex and highly non-linear hydrological processes in dry 
areas is seem to be the cause for suboptimal streamflow forecasts. Forecast performance at locations with 
large catchment areas show better skills than other locations having small catchment areas.  
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Figure 1. Study locations and catchments 
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1. INTRODUCTION 

The Bureau of Meteorology launched a deterministic 7-day streamflow forecast (SDF) service for Australia 
in September 2015 as part of its water information role and responsibilities under the Water Act 2007. This is 
the first national operational continuous streamflow forecast system developed in Australia. These 
streamflow forecasts indicate likely river flow volumes in the coming week. The service was developed 
mainly to assist river managers in making informed decisions about water resources to ensure the best use is 
made of natural river inflows, both from agricultural and environmental perspectives. It was developed in 
partnership with key water agencies and the science underpinning this service is supported by CSIRO and 
Bureau's Science for Services section. 

At present, the service provides daily streamflow forecasts to the public for 132 locations in 70 catchments 
across all jurisdictions in Australia (Figure 1). An additional 36 forecast locations are planned to be released 
to the public in November 2017. A customised hourly streamflow forecast product in addition to the daily 
forecast volume product is also available to registered users, who mainly represent river managers, reservoir 
operators, and irrigators. The registered user service is available for 209 forecast locations in 100 catchments. 
Further information about the development of this service can be found in Hapuarachchi et al. (2016).  

Quantifying performance of the operational forecasts is crucial to diagnose errors and in the planning of 
development work to improve forecast accuracy and extend the forecast lead time. This paper presents 
forecast evaluation results for 53 selected locations within the operational 7-day streamflow forecast service. 

2. OPERATIONAL SYSTEM 

The Bureau of Meteorology's next generation Hydrological Forecasting System (HyFS) is used to generate 7-
day streamflow forecasts operationally. HyFS is the central national platform for modelling that underpins 
flood forecasting and warning activity in Australia. HyFS is a Delft-FEWS (Flood Early Warning System) 
based forecasting environment (see http://oss.deltares.nl/web/delft-fews/about). This system allows for 
management of input observations and numerical weather prediction (NWP) model rainfall forecasts, input 
data processing, forecasting and maintenance workflows, model internal state management and forecast 
visualization. The core hydrological modeling package in the forecast system is the Short-term Water 
Information Forecasting Tools (SWIFT, Ward et al, 2012; Pagano et al., 2011). SWIFT is a streamflow 
modelling package designed for both operational streamflow forecasting and scientific research. It is a 
collection of hydrologic modelling components and utilities that support model calibration, validation, and 
forecast verification. For the SDF service, the GR4H model (hourly), which is an adaptation of the GR4J 
(Perrin et al., 2003) conceptual rainfall runoff model, is used based on the evidence of good performance in 
Australia from previous research. A catchment is delineated to small subareas (100-800km2) and GR4H is 
applied to each subarea. Then the runoff is routed to the catchment outlet using Muskingum channel routing 
(Cunge 1969). Simulated streamflow is post-processed using the dual pass error correction scheme (Pagano 
et al. 2011). Real-time gauged rainfall and streamflow data to run SWIFT operationally are prepared by the 
HyFS system. An inbuilt workflow in HyFS is used for data quality checking. Hourly streamflow forecasts of 
up to 7 days' lead-time are generated once a day using Australian Community Climate and Earth-System 
Simulator (ACCESS-G) rainfall forecasts. These forecasts are fed into an SDF product generator to produce 
plots, tables and data files, and the output is published in a web portal 
(www.bom.gov.au/water/7daystreamflow). The whole process is fully automated and forecasts are updated 
daily between 10:00AM and 11:00AM AEST. 

3.  STUDY CATCHMENTS 

Evaluation of rainfall and streamflow forecasts was carried out for 53 forecast locations in 23 catchments 
across all regions where the SDF service is operational. These catchments were selected to cover a wide 
range of sizes, climate conditions, and hydrological characteristics (Figure 1 and Table 1). 

4. DATA AND METHODOLOGY 

4.1. Data 

Real-time input data and output data of the operational service are archived daily since the start of the 
service. For this study, archived observed and forecast data generated by the operational system were used 
for evaluating the forecast performance for the period October 2015 to June 2017 (21 months). Although 
there is an inbuilt quality checking procedure in the HyFS, we found very poor quality input data at two 
selected forecast locations due to the observation sensor malfunctioning for a short period. These data were 

1816



Hapuarachchi et al., Performance evaluation of the national 7-day water forecast service 

 

 

removed from the evaluation procedure. In practice when a sensor issue is identified, the particular forecast 
location is disabled from the service until the issues is resolved. 

Table 1. Selected forecast locations for evaluating the SDF performance 

 

4.2. Rainfall Evaluation 

Semi-distributed hydrological models use subarea average rainfall: the mean areal rainfall estimated to fall 
within that subarea. However, in many cases, ACCESS-G (APS2) grid cells (25km) are larger than subareas. 
Therefore, in this study we evaluated the average rainfall in the upstream area of each forecast location. The 
average rainfall (for both observations and forecasts) was computed by integrating area-weighted subarea 
rainfall over the upstream area of each forecast location. Gauged rainfall at each subarea centroid was 
derived by inverse distance weighting of rainfall from nearby rain gauges. Rainfall forecasts were 
downscaled to subareas by taking the area-weighted average of gridded forecast rainfall for all grid cells 
intersecting the subarea. Forecasts were evaluated at a daily time step. This required aggregating 3-hourly 
ACCESS-G forecasts to daily totals. Area average forecast rainfall was compared with observed values of up 
to 7 days' lead-time. The forecasts of each lead-time (1 – 7 days) of the 21-month period were then evaluated 
using the metrics given in Section 4.4. 

4.3. Streamflow Evaluation 

Operational streamflow forecasts archived from October 2015 to June 2017 (21 months) were compared with 
observed values for forecast locations up to 7 days' lead-time. Daily mean streamflow was calculated using 
the hourly streamflow observations and forecasts. Forecast evaluation was carried out similar to the rainfall 
evaluation. 

4.4. Forecast Evaluation Metrics 

Evaluating operational forecast performance is useful to identify forecast discrepancies in order to improve 
the service. River operators are mainly interested in unbiased cumulative volume of water contributing to a 
reservoir or the main channel. Also they wanted to see the forecast skill with reference to a certain threshold. 
To accommodate these, the following metrics were used to evaluate the performance and forecast quality of 
models on a daily basis. The same metrics were used for the rainfall and streamflow evaluations. 
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4.4.1  Bias 
It is important to assess model bias to ensure the model is not consistently underestimating or 
overestimating streamflow. Bias (Bias) can be positive (underestimation) or negative 
(overestimation), and was calculated for each lead time (LT) using:  ݏܽ݅ܤ் = ∑ ൫ொ,್ೞ,ಽିொ,ೞ,ಽ൯సభ ∑ ൫ொ,್ೞ,ಽ൯సభ                                   (1) 

where ܳ,௦ is observed streamflow, ܳ,௦ is simulated streamflow, LT is lead-time, and n is total 
number of observations. 

 
4.4.2  Cumulative Volume Error (%) – (CVE) 

Cumulative Volume Error for each lead time LT (ܧܸܥ்) was computed as: 
்ܧܸܥ   = ∑ ∑ ൫ொ,್ೞ,ಽିொ,ೞ,ಽ൯ࢀࡸࢀࡸస 						సభ ∑ ∑ ൫ொ,್ೞ,ಽ൯ࢀࡸࢀࡸస 						సభ                       (2) 

4.4.3  Mean Absolute Error (MAE) 
Mean Absolute Error (MAE) is the average of the magnitude of the errors. The perfect score is zero, 
and was calculated by: ܧܣܯ் = ∑ หொ,್ೞ,ಽିொ,ೞ,ಽหసభ                                      (3) 

4.4.4  Mean Absolute Error Skill Score (MAESS) 
Skill Score (SS) is a measure of forecast accuracy with respect to the reference forecast accuracy.  

A skill score based on MAE is known as the Mean Absolute Error Skill Score (MAESS). It is 
calculated as: ܵܵܧܣܯ் = 1 − ∑ หொ,್ೞ,ಽିொ,ೞ,ಽหసభ∑ หொ,್ೞ,ಽିொ,್ೞ,หసభ                         (4) 

where ܳ,௦, is climatological streamflow calculated over the period from 1995 to 2014. For any 
given day of the year the climatology value will be the median of the period from 2 weeks before 
that day to 2 weeks after (i.e. 29 days) over the climatology period excluding the forecast year. 

4.4.5 Nash-Sutcliffe model Efficiency coefficient (NSE) 
The Nash-Sutcliffe efficiency (NSE) quantifies the relative magnitude of residual variance compared 
to the measured data variance, by: ܰܵܧ் = 1 − ∑ ൫ொ,ೀ್ೞ,ಽିொ,ೞ,ಽ൯మసభ∑ ൫ொ,್ೞ,ಽିொത൯సభ మ               (5) 

where  തܳ is mean observed streamflow. 

NSE values may range from -∞ to 1. The higher values imply greater accuracy. It can be easily 
compared across different catchments. For 7-day streamflow forecast performance, all the models 
with NSE ≥ 0.6 were considered to be satisfactory. 

5. RESULTS AND DISCUSSION 

Figure 2 shows overall forecast performance for the 53 locations evaluated in this study. It shows the number 
of forecast locations not exceeding the absolute bias (%), absolute cumulative volume error (%), and the 
mean absolute error (mm) scores at different lead times for rainfall and streamflow.  

Generally, streamflow bias increases with lead-time. About 70% of the catchments have forecast rainfall 
MAE less than 2mm at 1-day lead-time, while the streamflow MAE is less than 0.25mm (Figure 2: a3 and 
b3). This is mainly due to streamflow post-processing which has an effect up to 3-4 days lead time. 
Streamflow MAE of the rest of the 30% of forecast locations increases rapidly. Most of these are ephemeral 
catchments with upstream contributing areas less than 4,000 km2. The relative bias becomes large when the 
denominator is small (equation 1) particularly in ephemeral catchments. Forecast rainfall bias is less than 
10% only for 20% of forecast locations for 1-day lead-time. This implies that forecast rainfall error largely 
contributes to the suboptimal streamflow forecasts, and that streamflow post-processing has a large impact on 
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forecast performance particularly at shorter lead times. Although it is generally observed that the quality of 
forecast rainfall decreases with lead time, there is no much variation in CVE and bias here (Figure 2: a1 and 
a2). This is mainly because CVE and bias represent relative values. Therefore MAE is a better metric to 
compare the rainfall quality with lead-time. 

 

Figure 2. Forecast evaluation metrics for catchment average forecast rainfall (a1-a3) 
and streamflow forecasts (b1-b3) for lead-times 1-day to 7-days. 

Figure 3 shows the streamflow forecast skill (NSE) at each forecast location up to 7 days' lead-time. The 
NSE score for most locations is satisfactory up to 7 days' lead-time. In most catchments of NSW and QLD, 
the 21 months data we used had significant low-flow or no-flow periods, and has only a few large events. It 
was found that the magnitude of these large events control the overall forecast skill. During the evaluation 
period, streamflow forecasts in the Brisbane River catchment (Table 1: No. 18-21) show poor skills at all 
forecast locations, although the rainfall forecast skill was reasonably good. The forecast streamflow volume 
for April-May 2017 was much higher value when compared to observed which greatly reduces the NSE. This 
particular rainfall event happened just after three consecutive rainfall events that brought the model soil 
moisture state to its full capacity. Nonexistence of such a rainfall pattern in the model calibration period 
(2007-2014) led the catchment model having relatively small soil moisture and ground water capacity than 

Rainfall Streamflow 

(a1) 

(a2) 

(a3) 

(b1) 

(b2) 

(b3) 
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what it should be in reality. Therefore the model 
forecasted substantial overland flow, when in reality 
more rainfall infiltrated into the soil.  

On the other hand, streamflow forecasts at the 
Katherine River catchment (Table 1, No. 15-17) 
produces reasonably good forecast skill while the 
rainfall forecast shows considerably poor skill. Gradual 
changes in river flows in the Katherine River 
catchment driven by large contributions from 
groundwater, results in reasonably good streamflow 
forecasts during the evaluation period. The 
underpinning catchment characteristics, the flow 
persistence, and the respective rainfall pattern during 
the period led to good model performance. 

Figure 4 shows the forecast skill (MAESS) at 3-days 
lead-time at the 53 forecast locations. A positive 
MAESS up to 3-days lead-time has been used as the 
criterion for releasing a forecast location to public. 
Most forecast locations show good forecast skill 
irrespective of climate region. However, some 
locations in ephemeral catchments (temperate climate) 
in South Australia, Western Australia, north western 
part of Victoria, and some parts of inland New South 
Wales have relatively lower skill. Overall, about 10% 
of locations do not satisfy the criterion, although all 
locations satisfied the criterion when evaluated offline 
using a long period (2011-2014) of hindcast data 
(results present in the SDF website). The observed 
input data used in offline evaluation was carefully 
quality checked. One reason for lower operational 
forecast performance at a very small number of 
forecast locations is low quality real-time input data 
(observed and forecast). As a result, hydrological 
model initial states calculated using observed data (first 
4 days) were erroneous in some instances, and the error 
was propagated to the streamflow forecasts. In 
addition, the errors in a few large events have 
dominated the forecast skill score due to relatively 
small (21 months) evaluation data sample size. 

The differences in forecast skill were due to nonlinear 
dynamic behavior in catchment hydrologic processes, 
particularly the interaction between groundwater and 
channel flow. Estimation of streamflow for a relatively 
dry or ephemeral catchment is not consistent through a conceptual (lumped) modelling approach due to the 
simple approximation of surface and groundwater hydrologic processes. It is worth noting that all SDF 
catchment models underwent a thorough cross-validation process and produced satisfactory results during the 
hindcast period (from 2011 to 2014). However, discrepancies in rainfall distribution and pattern, and 
antecedent soil moisture conditions could lead to poor streamflow forecasts. Depending on prevailing climate 
and hydrological conditions, a catchment could behave as perennial, intermittent, or dry during certain 
periods. More research is necessary to improve conceptual hydrological models to underpin these highly 
variable natural conditions. 

6. CONCLISIONS 

We found operational streamflow forecasts for over 90% of the targeted 53 locations exceed a set criterion of 
positive Mean Absolute Error Skill Score (MAESS) up to 3-days lead-time. However, all locations passed 
the criterion when evaluated offline with hindcast data for a longer period dataset (results shown in the SDF 

Figure 3. Streamflow forecast skill at forecast 
locations with lead-time. The numbers refer to 

forecast locations given in Table 1. 
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website). The main reasons for lower performance for 10% of the forecast locations was driven by erroneous 
or low quality input data in real time 
situations, and also by the short (21 
month) evaluation data sample size. 

Overall, forecast performance for 
perennial catchments is found to 
outperform those in the ephemeral 
catchments. In addition, the forecast 
performance for locations with large 
upstream catchment areas (>10000km2) 
show better skills than those with small 
catchment areas due to streamflow 
persistence adding more value than 
forecast rainfall. Apart from forecast 
rainfall discrepancies, lack of flexibility of 
the hydrological model structure to 
represent complex and highly non-linear 
hydrological processes in dry, ephemeral 
catchments is seem to be the cause for 
suboptimal streamflow forecasts. It is 
intended to provide a probabilistic 
streamflow forecast that brings greater 
confidence and reliability to this service 
by 2019. 
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