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Abstract: The Australian Bureau of Meteorology (BOM) publishes and presents to stakeholders seasonal 
outlooks of key environmental variables including precipitation, temperature and streamflow. A similar 
forecast system for soil moisture (SM), if skilful, could benefit many stakeholders and sectors. Potential 
applications include agricultural planning (e.g. irrigation and sowing scheduling, planning of tilling, sowing 
and harvesting), livestock management, economic forecasts (e.g. improved crop yield predictions) and 
emergency management (e.g. bushfire and flood risk assessment). The aim of this study was to develop a 
proof-of-concept for a seasonal SM forecasting system for Australia and to test its performance. Specifically, 
we aimed to answer the research question: Can SM over the coming three months be forecast with better skill 
than the climatological expectation? 

This paper presents a SM forecasting methodology that combines the POAMA-2 seasonal climate prediction 
system with the AWRA landscape water balance model (AWRA-L). POAMA-2 is a global coupled ocean-
atmosphere model that currently underpins the BOM seasonal climate outlooks. POAMA-2 hindcasts of 
precipitation, air temperature and solar radiation, available for 1981-2014 on a 2.5° x 2.5° grid, were 
converted into a suitable format to force AWRA-L. The AWRA-L gridded water balance model simulates 
daily land surface water fluxes and stores, including SM for three soil layers (0-10 cm, 10-100 cm, 100-600 
cm), on a national 0.05° grid. Combining these two modelling systems, we produced hindcasts of monthly 
SM stored in the AWRA shallow soil layer (10-100 cm soil depth: corresponding to the root depth of many 
agricultural crops) for the period 1981-2013, with 12 hindcasts per year starting on the 1st of each month and 
22 ensemble members per hindcast. Further, we calculated probabilistic hindcasts of the occurrence of a 
potentially harmful event (PHE). The PHE aims to capture critically dry soil conditions with potentially 
adverse effects on, for example, agriculture. It is defined as a month in which the 20th percentile of SM in this 
month is drier than a 1-in-5-year event. Each hindcast had a length of three months, and all individual 
forecasts at one-, two- and three-month lead time were subsequently combined into continuous monthly time 
series with 22 ensemble members per time series. 

We assessed the skill of the hindcasts of soil moisture against i) historical SM simulations using AWRA-L 
forced with daily gridded climate analysis data produced by BOM and ii) ground-based in situ measurements 
of SM (0-90cm) from the OzNet network in the Murrumbidgee catchment. The predictive capacity of the 
hindcasts at one-month lead time appear relatively high and are mostly related to the state initialisation of 
AWRA-L, highlighting the importance of soil memory and SM initialisation at shorter time scales. However, 
at two- and three-month lead times, our results show relatively low predictive skill across Australia, with a 
few exceptions in wet regions in the northern, southern and south-western parts of Australia. Most of the skill 
stems from the ability of the forecasting system to reproduce the mean spatial and seasonal pattern of SM, 
however, increasing the skill to predict deviations from the mean climatology requires further work. This 
study presents baseline estimates of predictive skill at different time scales, which may be used as reference 
for future developments of SM forecasting systems, and provides recommendations for future research. 
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1. INTRODUCTION 

Different sectors, both in Australia and internationally, are moving toward utilisation of seasonal forecasts of 
soil moisture (SM). The agricultural sector can utilise forecasts to improve irrigation scheduling, planning of 
tilling, sowing and harvest, and livestock management. Emergency service authorities may utilise routine 
seasonal SM forecasts to improve the reliability of flood risk and bushfire hazard assessments. Moreover, 
foreknowledge of SM has the potential to improve seasonal forecasts of temperature and rainfall through 
feedbacks between the land surface and the atmosphere (Hirsch et al., 2014; Koster et al., 2003), although the 
strength of feedback across Australia, and the improvement to seasonal climate and hydrological prediction 
has yet to be established. The Australian Bureau of Meteorology (BOM) publishes seasonal climate outlooks 
(www.bom.gov.au/climate/ahead) of rainfall, streamflow and temperature several months ahead; however, a 
forecast of SM conditions at similar time scales does not yet exist. 

The aim of this study was therefore to develop a prototype seasonal SM forecast system for Australia to 
answer the question: Can SM over the coming three months be forecast with better skill than the 
climatological expectation? This aim was pursued by combining hindcasts of a global coupled atmosphere-
ocean model that currently underpins the BOM seasonal climate outlooks (POAMA-2) and a process-based 
landscape water balance model (AWRA-L), which is currently used operationally to simulate landscape 
water fluxes and stores across Australia. The specific objectives of the study included: 

1. Develop a methodology to process the POAMA-2 climate forecast output and use it to force the AWRA-
L model, producing hindcasts of SM stored in the shallow soil layer (10-100 cm) across Australia at 
one-, two- and three-month lead times; 

2. Assess the theoretical skill (defined in Methodology) of the hindcasts against historical SM, simulated 
by AWRA-L with forcing from an observational climate data set, and 

3. Assess the actual skill of the seasonal forecasts against ground-based measurements of in situ SM. 

The research presented in this paper was conducted as a short-term graduate student project within the 2016 
Australian Climate and Water Summer Institute. As part of the programme, participants conducted research 
projects with partner institutions (including BOM, CSIRO and Geoscience Australia) in a four-week time 
frame aiming to fill research gaps related to climate and water services in Australia. Due to the limited time 
frame, the development of a fully operational forecasting system was beyond the scope of this study. Instead, 
this paper presents a simple forecasting methodology that was developed to produce a comprehensive set of 
SM hindcasts. It provides baseline estimates of predictive skill at different time scales and outlines 
recommendations for future work. 

2. METHODOLOGY 

2.1 Calculation of seasonal hindcasts of SM 

Models 

Seasonal hindcasts of SM were created by combining the POAMA-2 (Predictive Ocean Atmosphere Model 
for Australia) coupled ocean-atmosphere model (Hudson et al., 2013) with the AWRA-L (Australian Water 
Resource Assessment – Landscape) water balance model version 5 (Frost et al., 2016a; Viney et al., 2015; 
original model version described in Van Dijk, 2010). 

POAMA-2 is the current operational seasonal prediction system used by BOM. POAMA-2 forecasts consist 
of 33 ensemble members; 11 members from three different model configurations. POAMA-2 hindcasts are 
available for 1981-2014, with 6 starting dates each month and a length of 270 days per hindcast, at 2.5° x 
2.5° resolution. 

AWRA-L is a gridded water balance model that simulates land surface water fluxes and stores, including 
runoff, evapotranspiration, deep drainage and SM for three soil layers (top: 0-10 cm, shallow: 10-100 cm, 
deep: 100-600 cm), on a 0.05° x 0.05° grid. Vegetation is modelled as two hydrological response units per 
grid cell, representing deep rooted vegetation (trees) and shallow rooted vegetation (grass). The model was 
developed by CSIRO and BOM and is run operationally by BOM from 1911 until yesterday 
(www.bom.gov.au/water/landscape) to inform the National Water Accounts, Water resource assessment, 
monitoring of soil moisture conditions in Australia and a number of registered users. The pre-calibrated 
AWRA-L model used in this study, and the in situ data used for evaluation of AWRA, are supplied as part of 
the AWRA Community modelling system (AWRA CMS: see https://github.com/awracms/awra_cms). 
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Calculation of SM hindcasts 

By forcing the AWRA-L model with POAMA-2 climate hindcasts, we produced hindcasts of daily SM (10-
100 cm soil depth) for the period 1981-2013, starting on the 1st of each month, with each hindcast having a 
length of three months and composed of 22 ensemble members. POAMA-2 output was initially pre-
processed to suit AWRA-L input, including: 1) extraction of required variables (precipitation, minimum and 
maximum air temperature, solar radiation), 2) regridding to AWRA-L resolution by nearest neighbour 
interpolation, 3) cropping to the AWRA-L extent, and 4) unit conversions. At the start of each hindcast, state 
variables were initialised using output from a historical AWRA-L run using the Australian Water Availability 
Project data (described in the following section). 

The daily output of AWRA-L soil moisture was aggregated into monthly time series and monthly summary 
statistics were calculated (monthly mean, minimum, maximum, 20th and 80th percentiles). In addition, 
probabilistic hindcasts of the occurrence of a potentially harmful event (PHE) were calculated. The PHE aims 
to capture critically dry soil conditions with potentially adverse effects on, for example, agriculture or 
bushfire risk. It is defined here as a month in which the 20th percentile of daily mean SM (referred to as 
SM_20pctl) is drier than a 1-in-5-year event. In this study, the 20th percentile of daily SM was chosen as an 
indicator for dry conditions as it describes approximately the driest six days of the month, unlike the total 
monthly minimum, which only contains information of the driest day and is capped at zero.  

Calculation of historical SM reference data 

A reference dataset was separately calculated for 1911-2013 by forcing AWRA-L with historical climate data 
from the Australian Water Availability Project (AWAP) (Jones et al., 2009; http://www.csiro.au/awap/). The 
AWAP dataset provides gridded climate data of site-based surface observations on a 0.05° x 0.05° grid. Since 
solar radiation was only available from 1990 onwards, pre-1990 solar radiation data was padded with its 
daily climatology (using the default gap-filling method in AWRA-L) and combined with daily precipitation, 
minimum and maximum air temperature data covering the period 1911-2013. Daily outputs of SM were 
aggregated to monthly values and statistics calculated. The output from this historical SM simulation was 
used for a) the initialisation of hindcasts, b) as a historical reference for threshold-based SM indicators and 
c) for the evaluation of the predictive skill of the SM hindcasts. 

2.2 Tests of forecast skill 

Deterministic forecasts of mean monthly SM 

We tested the theoretical and actual skill of the deterministic SM forecasts at one-, two- and three-month 
lead times using the hindcast ensemble mean of monthly mean SM. The theoretical or potential skill of the 
hindcasts was assessed by comparing the SM hindcasts with the historical reference (AWRA-L estimates 
forced by the AWAP data, described in the previous section), for every grid cell separately. This comparison 
assumes that the historical reference time series 
represents the “true” historical SM conditions across 
the country. It captures SM prediction errors due to 
uncertainties in the climate data (model biases in 
POAMA-2 and initialisation uncertainties of the 
climate data) and their propagation through to errors 
in SM predictions, but it does not capture systematic 
model biases in AWRA-L and errors related to the 
SM initialisation. The actual skill captures 
uncertainties related to climate inputs, model biases 
and uncertainties in the initialisation of both the 
climate and SM hindcasts.  

The actual skill was calculated by comparing the SM 
hindcasts with point-based SM in situ measurements 
within the OzNet network (Smith et al., 2012), with 
observations covering 0-90cm depth. These data were 
collated (with a range of other soil moisture, evapotranspiration, streamflow and recharge datasets) and 
formatted for AWRA-L evaluation and comparison purposes  (Frost et al., 2016b). We compared the 
hindcasts with the ground-based measurements from 38 sites covering 2001-2013 across four sampling areas 

 

Figure 1. Locations of in situ soil moisture 
measurements within OzNet network 
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within the Murrumbidgee catchment in South Eastern Australia (see Figure 1: Murrumbidgee, Adelong, 
Kyeamba and Yanco). 

For both the theoretical and actual skill assessment, the coefficient of determination (R2) from a regression of 
predicted SM against reference and observed SM was calculated. For the theoretical skill, we additionally 
calculated the R2 from anomalies of SM after subtraction of the mean climatology to assess whether the 
model is, for example, skilful for SM anomalies, but not SM itself due to biases introduced by POAMA-2. 

Probabilistic forecasts of a potentially harmful event 

The probabilistic forecast of a PHE – i.e. the likelihood of such an event occurring – was assessed against the 
historical reference (assessment of theoretical skill), but not against OzNet measurements, as their time range 
was insufficiently long to determine the relative thresholds required for the PHE calculation. We assessed the 
skill by calculating the Brier score and Brier skill score. 

The Brier score captures the magnitude of the probability forecast errors (Brier, 1950; Wilks, 2011) relative 
to a reference, and is calculated as follows: ܵܤ = ଵே∑ ሺ − ሻଶேୀଵ ; with  being forecast probability of an event in observation i, and  the actual 

occurrence of event in observation i (0 or 1). 

The Brier score is analogous to the mean squared error (MSE), but for discrete or binary target variables. It 
ranges between zero and one, with zero being the perfect score (Wilks, 2011). The Brier skill score evaluates 
the relative skill of a forecast over that of the long-term climatology; it is calculated as follows: ܵܵܤ = 1 − ௌௌೝೝ; with ܵܤ being the Brier score of the forecast, and ܵܤ the Brier score of the 

climatology or a “naïve” reference forecast. 

Here, we used a 20% probability of a PHE occurring in every grid cell and year as reference forecast, related 
to the percentile-based definition of the PHE as an event occurring – on average –  in one out of five years. A 
Brier skill score of one indicates a perfect forecast; zero indicates that the forecast and the reference have 
equal skill, and a negative value indicates that the forecast is worse than the climatological expectation 
(Wilks, 2011). 

3. RESULTS AND DISCUSSION 

Hindcasts of monthly SM (10-100 cm soil depth) were produced for the period 1981-2013, comprising 12 
hindcasts per year starting on the 1st of every month. Each hindcast had a length of three months and 
consisted of 22 ensemble members each comprising the following variables: i) monthly mean, minimum and 
maximum SM, ii) the 20th and 80th percentile of daily SM and iii) the probability of a PHE. 

3.1 Theoretical skill – comparison with historical AWRA-L run 

We compared the hindcast ensemble mean with the historical reference time series to assess the theoretical 
skill of the seasonal forecasts of mean monthly SM. The coefficient of determination of SM is very high 
throughout the country at one-month lead time (mean R2 of 0.8) and decreases with increasing lead times 
(mean R2 values of 0.4 and 0.3 at two- and three-month lead time) (Figure 2a). The spatial patterns look 
similar for different lead times. The explained variance of SM anomalies is highest in regions in equatorial 
and tropical regions of Western Australia, Northern Territory and Queensland as well as in temperate 
regions, particularly South-West Australia, Tasmania, large parts of Victoria and parts of New South Wales 
and South Australia.  Some regions in inland Australia, particularly the Gibson Desert in Western Australia, 
exhibit very low predictive skill due to a lack of proximal rain gauges in these regions and therefore poor or 
missing rainfall estimates in the AWAP dataset (regions with less than ten years of rainfall data were 
masked). 

In terms of SM anomalies (deviations from the mean climatology of SM), the explained variance is 
particularly high for the forecasts at one-month lead time, however, R2 values decrease sharply at two-month 
and three-month lead times (mean R2 at one-, two- and three-month lead time are 0.75, 0.24 and 0.1, 
respectively) and are considerably lower than for the explained variance of actual SM (Figure 2b). The 
difference in skill between actual SM and SM anomalies (panel a and b) suggests that most of the predictive 
capacity at two- and three-month lead time is associated with the capacity of the forecasting system to 
correctly reproduce the mean climatology of SM. 
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We further assessed the contribution of SM memory to predictive skill by comparing the explained variance 
of the hindcasts with hindcasts that were initialised using the climatology of SM, as default states provided in 
AWRA-L. The comparison shows that most of the explained variance at one-month lead time is related to the 
SM initialisation, highlighting the importance of memory for the prediction of SM at shorter time scales 
(Figure 2c). However, at two- and three-month lead time, the initialisation of SM plays a minor role, as the 
difference in forecast skill is negligible in most parts of the country. This is likely related to the fact that most 
of the explained variance at these lead times was found to be associated with the ability of the forecasting 
system to reproduce the mean climatology of SM; and therefore, initialising the hindcasts with default SM 
states in this case does not reduce the explained variance, compared to using the correct initialisation. The 
strongest contribution of initial conditions to forecasting skill (i.e. a large difference in R2 between default 
and correct initialisation) can be found in southern Victoria and Tasmania, which may indicate higher SM 
memory in these regions than in other parts of Australia. The difference between panel b and c in Figure 2 is 
equal to the skill attributable to the POAMA-2 hindcasts, indicating particularly high contribution of 
predictive capacity of the seasonal forecast system in parts of Victoria, New South Wales and the South-West 
of Western Australia. 

 

a) 

 

b) 

 

c) 

 

 Figure 2. Theoretical hindcast skill for mean monthly SM at one-, two- and three-month lead times (columns 1, 2 and 3, 
respectively). Skill is expressed as the fraction of explained variance (R2) in reference model simulations using historical 
forcing. a) Skill of actual SM; b) skill of SM anomalies relative to climatology; c) contribution of SM initial state to skill 
improvement (difference in R2 of hindcasts using actual initial states and climatology initial states). Regions with fewer 

than 10 daily rainfall data points in the AWAP dataset were masked. 

Probabilistic forecasts of potentially harmful event 

The Brier score of the probabilistic forecast of the PHE is relatively homogenous throughout most of the 
country (Figure 3a) and increases with lead time, meaning the skill decreases with increasing lead time. The 
mean Brier scores across Australia are 0.07, 0.17 and 0.23, at one-, two- and three-month lead times 
respectively. The maps of Brier skill score indicate that the seasonal forecast system of the binary event 
increases the skill considerably at one-month lead time, to some degree in certain regions at two-month lead 
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time and no skill is added at three-month lead time (Figure 3b). At one-month lead time, the mean Brier skill 
score is 0.55, i.e. on average the seasonal forecast reduces the error by 55% compared to the naïve forecast.  

a) 

 

b) 

 

 Figure 3. Skill assessment for probabilistic forecast of a PHE at one-, two- and three-month lead time (columns 1, 2 and 
3 respectively). The probabilistic PHE forecast describes the likelihood of the six driest days being at or below a 1-in-5-

year event threshold. a) Brier score. b) Brier skill score (BSS) as comparison against reference forecast, predicting a 20% 
chance of the PHE in every year and grid cell. Negative BSS values (indicating worse skill than the reference) were set to 

zero. Regions with fewer than 10 daily rainfall data points in the AWAP dataset were masked. 

3.2 Actual skill – comparison with OzNet in situ measurements 

The coefficient of determination based on the AWRA-L historical run represents the model performance, i.e., 
the maximally attainable skill, and ranges between approximately 0.45 and 0.75 (Figure 4, top panel). The 
findings of the explained variance at the very local scale are comparable to the results at grid cell scale. As 
can be expected, the SM hindcasts have decreasing skill with increasing lead times. The hindcasts at one- and 
two-month lead time have higher skill than the SM climatology across all locations. However, at all 
measurement sites except Adelong, the three-month hindcasts have less or similar skill as the mean 
climatology. Further, we find that the actual skill is equal to the product of theoretical skill and the historical 
model performance of AWRA-L – expressed as R2 – for each station and lead time (values not shown here), 
which is similar to results found in previous research on stream flow forecasts (Van Dijk et al., 2013). These 
findings suggest that the actual skill at a new site can be estimated by combining the theoretical skill maps 
with data on the historical model performance of AWRA-L. This allows to estimate the skill at new locations 
as well as to separate sources of error into biases in the water balance model or the seasonal climate forecast. 

 

Figure 4. Mean coefficient of determination (R2) from a regression of monthly mean SM (historical simulation and 
hindcasts at three lead times) against OzNet in situ SM measurements, averaged over all sites at one location. 
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4. CONCLUSIONS 

This study presented a proof-of-concept of a seasonal forecasting system of SM for Australia based on 
POAMA-2 and AWRA-L and provides baseline estimates of forecast skill. We developed seasonal hindcasts 
of SM in the shallow soil layer for 1982-2013 and assessed the predictive skill using a range of skill 
measures that capture the capacity of the forecasts to reproduce mean monthly SM temporal dynamics, 
relative anomalies of SM as well as the likelihood of a potentially harmful event. We find that using the 
current modelling set-up, the predictive skill is good at one-month lead time, but decreases considerably at 
two- and three-month lead time. This study has a number of limitations which may be addressed in future 
studies; steps to develop the seasonal forecasting system further include: 

• Improving the spatial resolution of the climate forecasts by applying an appropriate downscaling method 
to the POAMA-2 hindcasts (e.g. a bias correction, quantile-quantile regression, analogue downscaling); 

• Broadening the skill assessment, e.g. calculating ROC curves and reliability diagrams (Wilks, 2011); 
comparing with additional in situ SM data from elsewhere in Australia; testing skill separated by month 
and season and at different time scales (daily vs. monthly), and adding skill for other prediction targets; 

• Investigating skill improvements achievable by using seasonal climate forecasts of precipitation, air 
temperature, solar radiation, from the Bureau's next generation seasonal forecast climate system 
(ACCESS-S) once available, and comparing the resulting skill with that of SM estimates internal to the 
ACCESS-S model. 
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