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Abstract: Dispersion occurs when solutes are transported in the atmosphere, porous media or waterways 
due to several processes. Dispersion smears out the concentration if a pulse input occurs on the inlet face of a 
domain as the solute is transported in the domain. This is due to a combination of molecular diffusion, due to 
the concentration gradient and fluid velocity differences occurring within the fluid. The effect of dispersion is 
critical when computing solute transport as the solute will arrive sooner than under purely advective (piston 
front) and although at a lower concentration may still be critical if a contaminant is above a threshold level.   

Many models that describe solute transport use a simple box structure, with the spatial domain split into discrete 
volumes. The solute is then transported between the boxes using a transfer coefficient to account for both 
advection of the carrier fluid and dispersion. When both the time step and spatial discretization are small these 
models can approximate the differential equations of flow. However, when the time step and or spatial 
discretization is large they become models where dispersion is either added explicitly or implicitly as a 
consequence of the method of computation. In both cases it is worthwhile being able to determine how the 
method of computation affects dispersion in these 
models. 

One method that is used with box models is to 
assume that all of the solute entering the box in the 
time step is fully mixed by the end of the time. This 
method is called a fully mixed tank reactor (FMTR). 
This method introduces dispersion purely by the 
method of computation, but this may be too little or 
too much dispersion. We consider a box model for a 
river or stream and use both the travel time of the 
water through the box and the Peclet number to 
consider their effect on the solute concentration at 
the outlet compared to an analytical solution of the 
transport.   

Box models can trace a pulse of solute using 
advection and a fully mixed tank reactor (FMTR) 
model or by determining the centre of mass of the 
pulse. Here we compare how these different 
approaches will introduce errors in the 
concentration, related to the Peclet number of the 
flow, and show that if the true behaviour is to be approximated using a FMTR, the reach length or time step 
would have to vary with the flow velocity. 

A purely advective approximation for determining the concentration center of mass can also fail as dispersion 
will move the centre of mass as well as advection. This can result in underestimation of concentration and 
arrival times of the peak concentration. Figure 1 shows the time of arrival at the outlet for a FMTR and piston 
flow methods. 
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Figure 1. Dimensionless time (t*) at which the 
peak concentration is reached at x = L for a pulse 
input at x = 0 at t = 0.  Also shown is the time that 

a ‘piston’ or advective peck would arrive at L. 
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1. INTRODUCTION 

Box models are often used for modelling of flow in porous media (Neumann et al, 2011; Neuman et al. 2009), 
lakes (Sato and Schnoor, 1991) and rivers (Rauch, 1998).  These models consist of segregating the spatial 
domain into boxes, where the state variables are usually constant for a set period of time.  Fluxes of materials 
into and out of the boxes are then considered to be constant for a set period of time and the difference in the 
fluxes can then be used to update the state variables at the end of the time step. When the spatial and time steps 
are small such models approximate the differential equations that are often used to describe the flow of mass 
in the system domain (Neumann et al., 2011). When the spatial or temporal scale is large then the fluxes in the 
box models become transfer coefficients based on rules. The concentration of the state variable within the box 
can be calculated by a fully mixed approach (as in a fully mixed tank reactor (FMTR)). This can lead to 
numerical dispersion with the state variable (mass) moving too quickly downstream. Another approach is to 
estimate the position of the advective front within the box and then keep the concentration at its original value 
until the advective front reaches the end of the box and concentration changes as a square wave (Figure 2). 
These are the two end members of what is possible with many schemes for estimating the dispersion to include 
in the box models. Here I will consider a river model, the full differential equation description of river models 
is thoroughly reviewed by Cox (2003). A FMTR approximation of such a transport model is shown in figure 
2. 

 

 

The flow of water in the box (reach) is described by flow rate from upstream (Qi-1,j (m3 s-1)), input/output from 
the sub-catchment (ΔQi,j (m3 s-1)) and outflow (Qi,j (m3 s-1)), where the index variable i is used for the spatial 
steps and the index variable j is used for the temporal steps.  The input/output from the sub-catchment includes 
such flows as runoff, groundwater flow, extractions and evaporation.  These values are fixed at the start of the 
time step (j) and generated by the hydrological component of the model.  Associated with these water flows 

mass of solutes are inputted from upstream at the rate 1, 1, 1,i j i j i jm Q c− − −=  (kg s-1) and within the box by Δmi,j 

(kg s-1) and outputted to the downstream box mi,j (kg s-1).  Mass of solute (Mri,j (kg m-1)) per unit length of the 
box is stored within the water volume of the box (Vi,j) of length Li (m).  The model is stepped forward in time 
as follows. 

The storage of water in the box at the start of the next time step is given by: 

( ), 1 1, , , ,i j i j i j i j s i jV Q Q Q t V+ −= − + Δ +      (1) 

where ts is the time step for the model (s).  The travel time, Ti,j (s) for a parcel of water in the link is given by: 

, , , ,/ /i j i j j i j i i jT A L Q L V= =      (2) 

 

 

Figure 2. Conceptualisation of box solute model for eWater Source model.  The index variable i is 
related to nodes and the index j to time. 
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where Ai,j is the mean cross-sectional area of the box (m2) on that day, vi,j is the mean velocity in the link (m s-

1) and Li is the linear length of the box (m). The travel time then determines what the concentration will be in 
the box at the next time step as:  

T < ts the solute in the box at the start of the time step is displaced downstream along with the some 
of the input and plus or minus some additions or transformations within the box 

T = ts the solute in the box at the start of the time step is displaced downstream plus or minus some 
additions or transformations within the box 

T > ts some of the solute in the box at the start of the time step is displaced downstream plus or minus 
some additions or transformations within the box. 

1.1. Definition of the Problem 

It is the latter condition that results in dispersion and is the one of interest here. If we ignore the additions and 
transformations that may occur in the box i.e. the only input is from the upstream box then we can derive the 
concentration at the downstream end of the box as: 

( ), 1 1, , 1, ,/ /i j i j s i i j i s i j i jMr m t L Mr L t Q A+ − −= + −    (3a) 

, , , ,/i j i j i j i jm Mr Q A=       (3b) 

The differential equation for this problem is described by: 

c c c
D v

t x x

∂ ∂ ∂= −
∂ ∂ ∂

      (4) 

where D is the dispersion coefficient (m2 s-1) and v = Q/A is the average advective velocity of the fluid (m s-1). 
For a pulse input of time length t0 with the pulse concentration cf (kg m-3) and a length of box of L (m) the 
initial and boundary conditions are: 

0

*
0

0

( , ) 0, 0, 0

(0, ) , 0

0,

f f
x

c x t t x L

DQ dc
c t c c t t

A dx

dc
D x L

dt

=

= = ≤ ≤

= = − < ≤

= =

 

An analytical solution exists for (4) subject to these initial boundary conditions for a pulse and for the 
concentration at L (ce) is (Brenner, 1962): 

( ) ( ) ( )2 *

* * *
2 2

1

sin 2 exp /
( , ) 2exp 2

k k k

k k

t P
c x L t P t

P P

λ λ λ
λ

∞

=

−
 = = −  + +    (5) 

where *
0 0( ) / ( )e fc c c c c= − −  , P = Pe/4 = vL/4D, Pe is the Peclet number, t*= tv/L= t/T and λk are the 

positive roots taken in order of increasing magnitude of tan(2λ) = 2λP/(λ2 – P2).  This solution breaks down 
at small values of t and large values of P and then an asymptotic solution is required (Brenner, 1962): 

( )
( ) ( )

( ) ( ) ( ) ( )

2* * * *
* * *

*

2* 2 * * *

erfc 1 / 1 4
( , ) 1 3 2 1 exp

2

1/ 2 2 3 4 4 1 exp 4 erfc 1 /

t P t P t Pt
c x L t P t

t

P t P t P t P t

π

   − − −    = = − − + +   
 

   + + + + + +    

  (6) 

The range where either (5) or (6) is appropriate is given in Brenner (1962, Fig. 1). 
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2. METHODS 

For the FMTR for a single box with the pulse input as given above it can be shown that the concentration at 
the outlet is given by a geometric series: 

( )
( ) ( )

'

'
0

2' ' '
0 0

1

( ) 1 , / ,

e

t

e f s

c t c

c t c c c t t t t Iτ τ −

= =

= + − − = ∈
   (7) 

where τ = ts/T is the dimensionless time step relative to the travel time and t’ is the number of time steps since 
the pulse started. A similar geometric series can be derived for a continuous step change in concentration but 
is not presented here. 

A program in Matlab was written to solve (5), (6) and (7) and the results were computed for a range of Peclet 
numbers from 2 to 30 and range of lengths from 1000 to 100,000m. The dispersion coefficient was taken as 
0.28 m2 s-1 from Kim et al. (2011). The travel times and velocities computed for this range are given in Table 
1.c 

Table 1.  Values of Pe and L used in the calculations and values of v and T calculated from these with D = 0.28 
m2 s-1. Note for convenience the time and velocity are in units of day and m day-1 respectively. 

Pe L = 1000 m L =5000 m L =10000 m L =50000 m L =100000 m 

v  

(m day-1) 

T 

(day) 

v  

(m day-1) 

T 

(day) 

v  

(m day-1) 

T 

(day) 

v  

(m day-1) 

T 

(day) 

v  

(m day-1) 

T 

(day) 

0.5 12 83.33 2.4 2083 1.2 8333 0.24 208333 0.12 833333 

1 24 41.67 4.8 1042 2.4 4167 0.48 104167 0.24 416667 

2 48 20.83 9.6 520.8 4.8 2083 0.96 52083 0.48 208333 

4 96 10.42 19.2 260.4 9.6 1042 1.92 26042 0.96 104166 

6 144 6.94 28.8 173.6 1.44 694.4 2.88 17361 1.44 69444 

8 192 5.21 38.4 130.2 1.92 520.8 3.84 13021 1.92 52083 

10 240 4.17 48.0 104.2 2.4 416.7 4.8 10417 2.40 41667 

15 360 2.78 72.0 69.4 3.6 277.8 7.2 6944 3.60 27778 

20 480 2.08 96.0 52.1 4.8 208.3 9.6 5208 4.80 20833 

25 600 1.67 120 41.7 6.0 166.7 12.0 4167 6.00 16667 

30 720 1.39 144 34.7 7.2 138.9 14.4 3472 7.20 13889 

 

3. RESULTS AND DISCUSSION 

The time step (ts) was fixed at 86400s (1 day) in the results shown and the other parameters varied. The pulse 
time length was taken as one time step i.e. t0 = ts.  The value of c0 and cf were taken as 0 and 1 kg m-3 respectively 
so maximum possible value for ce is 1 kg m-3. The FMTR model results in increase dispersion of the 
concentration (smearing out) as the value of τ (=ts/T, time step/travel time) decreases (fig. 3). The other feature 
of this result is that it shows that the maximum concentration always occurs at t* = 2. The fully mixed condition 
will always give this result which offers a means to estimate the box length required so the peak occurs at t* = 
2.  A value of t* = 2 implies that T = 2ts and using the definitions of T and Pe we can rearrange to get a value 
for L when t* = 2 given by: 

p e sL P Dt=        (8) 
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Thus, if an FMTR model had box lengths 
around Lp this would mean that the model 
would, at least estimate the peak 
concentration at the correct time. 
However, (8) will have to be solved 
recursively as L occurs in the Pe term.  

The length of the box has an effect on the 
peak concentration but little effect on the 
position of the dimensionless time t* at 
which the peak occurs when the value of 
Pe was a constant value of 2 (Fig. 4). The 
peak position predicted with the analytical 
solution is at approximately t* = 0.4. Given 
that D is taken as a constant, then as L 
increases the velocity will have to 
decrease for t* to be constant. From the 
values in Table 1 and the definition of t* 
we can calculate the time which the peak 
occurred with the analytical solution 
which is 8.3, 208, 833 and 20833 days for 
L of 1000, 5000, 10000 and 50000 m 
respectively. As the box size gets longer 
the discrepancy between the peak time for the FMTR of 2 days and the analytical solution gets larger. From 
(8) we can calculate the desired box length for the peak to occur at 2 days and this is 220 m. The results in 
figure 3 also show that the concentration is too high at t* < 0.2 and too low for t* ≥ 0.2.  

For a fixed L = 
1000 m the 
results show 
that as the Pe 
increases to 
about 20 the 
FMTR model 
will get closer 
at predicting 
the peak time 
(Table 1), as T 
is 
approximately 
2. The velocity 
will need to be 
high at 480 m 
per day which 
is moderate. 
At higher 
velocities T 
will decrease 
to less than 2. 

If, as is used in 
some models, 
a fixed time 
step is used 
then this will 
mean that the 
length of the 
boxes will 
need to be 
carefully 
consider if the 

t' 

0 5 10 15 20 25

c*
(x

 =
 L

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

 τ = 0.5
τ = 0.25
τ = 0.167
τ = 0.10
τ = 0.05

 

Figure 3. Relative concentration (c*) at the outlet of the box 
(x = L) with t* for different values of τ. The calculations 

were carried out with (7). 
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Figure 4.  Comparison of the dispersive model ((5), (6)) with the FMTR model ((7)) 
with Pe = 2 for different reach lengths of: a) L = 1000 m, b) L = 5000 m, c) L = 10000 m 
and d) L = 50000 m. 
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FMTR method is used. Taking a fixed ts of 1 
day and a range of D from 0.01 to 1 m2 s-1 
along with values of Pe from 0.5 to 50 the 
range of values of L can be calculated with (8) 
(Fig. 5). These values of D are in the range of 
values measured in Australian rivers: 0.04 to 
0.15 m2 s-1 in Magela Creek (Airey et al., 
1984); 0.11 to 0.12 m2 s-1 in the Torrens River 
(Jones, 2005). 

An alternative simple solute transport model is 
to use the travel time (advective model) and 
calculate the center of mass of the solute 
plume and distribute the mass with leading and 
trailing shape factor (Close, 1996; Cook and 
Bartley, 2009).  The problem with this 
modelling approach is that the center of mass 
position is also affected by dispersion.  This is 
especially true if the box (reach) length is long 
and the Pe low. For example, for a length of 
100 km and Pe of 2 the analytical model would 
predict the peak to reach the exit at 88000 days 
while the advective nodel would predict 
208333 days. However, this would represent a 
very low flow velocity of 0.48 m day-1. 
Whereas if L = 1 km and Pe = 30 then the velocity will be 720 m day-1 and advective model will estimate a 
peak at 1.4 days and the analytical model 1.8 
days (Figure 1). The advective and FMTR 
models will give best estimates when T = 2ts. 
When T > 2ts the FMTR underestimate while 
the advective model will overestimate the 
peak arrival time at the exit from the box.  

Figure 6 shows the relationship between the 
peak concentration value and the Peclet 
number for the three different models and two 
values of L. We have assumed that for the 
advective model the peak concentration will 
remain at the inlet concentration. The peak 
concentration is similar for the FMTR and 
analytical solution models up to a Pe of about 
10. The peak concentration for the FMTR then 
underestimates compared to the analytical 
solution, while the advective model 
overestimates throughout range of Pe values. 
What all of these results show is that for the 
FMTR model to give reasonable estimates of 
solute transport in box models the length of the 
box and/or the time steps need to be 
appropriate. Often such models use a fixed 
time step, so it is the length of the box that is the only variable that can be changed. 

The results presented here indicate how box models used in many of the fields of application: atmosphere, 
rivers, lakes oceans; porous media, can be properly designed so that the numerical dispersion is similar to the 
actual dispersion. What this shows is that where fixed time steps are used and the range of velocities and hence 
Peclet numbers vary the length of the box will either need to vary or in interpreting the results the user will 
need to consider the fact that the model may over- or underestimate the dispersion. The problems with these 
simple box models has led to the development of models using moments to better estimate the dispersion in 
fluid transport models (Adams et al., 1992; Zhang et al., 2008). 

PeD (m2 s-1)

0 20 40 60 80 100 120

L 
(m

)

0

500

1000

1500

2000

2500

 

Figure 5.  Relationship between PeD and L when ts = 1 
day calculated using (8). 
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Figure 6. Comparison of peak relative concentration 
calculated with the FMTR model compared to analytical 
model for L = 1000 and 100000 m.  When L = 100000 m 
the right-hand y-axis indicates the values of c*.  Also 
shown is the peak concentration for advection (piston 
like) solute transport. 
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4. CONCLUSION 

A geometric series is developed for the exit concentration foe box models based on the fully mixed tank reactor 
(FMTR) approach. This is used along with an analytical solution of solute transport in the box for a pulse input 
to show that the FMTR will only be approximately correct when the travel time of fluid in the box is equal to 
two time steps. 

An approximate solution for determining the appropriate box length is developed and it shows that for river 
models the value could vary up to 2000 m depending on the PeD (fig. 5). 

Purely advective solutions are also compared to the analytical solution and shown to only give a good 
approximation of the peak exit concentration when Pe is large. 
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