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Abstract: Catchment water quality models are notoriously over-parametrised. Given this condition, it 
is useful to be able to identify which parameters have the greatest influence on the model results. In theory, 
this could be accomplished through a detailed first principles interrogation of the mathematical structure of the 
model in an abstract manner. This however, is impractical in most instances owing to the complexity of the 
models and posteriori methods of parameter sensitivity analysis are more conventional.  

As with most aspects of large-scale modelling endeavours, a major consideration in choosing a technique for 
sensitivity analysis is efficiency and a compromise between computational effort and numerical accuracy is 
usually negotiated. ANOVA based sensitivity analysis methods are very popular as they offer a holistic survey 
of the parameter sensitivity by not only accounting for the response of the model output surface due to the 
activity of single parameters acting independently, but also due to the interaction between parameters. These 
global sensitivity indices are usually calculated by Monte Carlo simulation and may be too computationally 
demanding to be routinely applied in water quality modelling scenarios.  

We demonstrate the application of the group method of data handling (GMDH) inductive, self-organising 
modelling method to the sensitivity analysis of constituent generation parameters of an integrated hydrological 
and water quality model. By using a modestly sized sample input-output dataset, a GMDH neural network is 
used to synthesise a sparse, random-sampling high dimensional model representation (RS-HDMR) that can be 
used to calculate first and second order Sobol sensitivity indices. This algorithm potentially leads to reductions 
in computational cost of 2-3 orders of magnitude over Monto Carlo simulation. 

Although several other adaptive methods for efficiently constructing a sparse RS-HDMR have been reported 
in the literature, such as polynomial chaos expansions, the parameter selection and noise filtering 
characteristics of the GMDH network may result in more optimal HDMR expansion.   
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1. INTRODUCTION 

Reduced to their most fundamental form, water quality models are a set of equations that describe the processes 
that lead to the generation and transport of various constituents that contribute to instream loads or 
concentrations (James 1993). As these models increase in complexity to account for a broader range of 
landscape processes, the number of parameters informing the model can also increase substantially. It would 
stand to reason that an insight into which parameters contribute most significantly to variation in the model 
output is not only useful for an improved qualitative understanding of the behaviour of the model, it is also 
valuable for designing a model calibration strategy (Nossent, Elsen, and Bauwens 2011).  

Sensitivity analysis provides a method for identifying a set of parameters that influences the output of a model 
or process in general and is regularly applied to environmental models (Pianosi et al. 2016),  hydrological 
models (Song et al. 2015)  and water quality models (Liu and Zou 2012; Khorashadi Zadeh et al. 2017; 
Manache and Melching 2004; Sincock, Wheater, and Whitehead 2003).  

A number of approaches are available for studying how the sensitivity of a model output can be apportioned 
to various input parameters (Iooss and Lemaître 2015; Pianosi et al. 2016). Among the most ubiquitous of these 
are those that are structured around the functional decomposition of variance, particularly Sobol’s method 
(Sobol 2001). The aim of variance based methods is to determine the magnitude of the variance of the model 
output attributable to the variance of each model parameter. In the Sobol analysis, variance associated with a 
single parameter or due to interactions between parameters is expressed as a Sobol sensitivity indices which 
represent fractions of unconditional variance of the model output.  

The objective of this paper is to explore the application of a novel and efficient approach to the Sobol sensitivity 
analysis of a set of water quality model parameters effecting the generation and transport of fine sediment in a 
distributed stream network.  

2. BACKGROUND 

2.1. Water Quality Model 

A Source Catchments model (Delgado et al. 2012; Kelley and O’Brien 2012) for the Burnett-Mary NRM region 
in Queensland which has been described in detail elsewhere (McCloskey et al. 2017) has been used for the 
current work. The Source Catchments model employs a set of fit for purpose component models for estimating 
the generation of constituents from various land use areas across the landscape. This current study is concerned 
with fine sediment generation and transport associated with the following processes: 

• hillslope erosion occurring on grazing, forestry and conservation land use areas; 
• streambank erosion; 
• fine sediment settling and remobilisation in the channel; and 
• deposition of fine sediment on the floodplain. 

All of the listed processes are managed through a purpose built Dynamic SedNet plugin (Ellis and Searle 2014) 
which implements a daily time step Revised Soil Loss Equation (RUSLE) (Renard et al. 1991) for modelling 
hillslope erosion. Dynamic streambank erosion, channel and floodplain processes are discussed in Ellis and 
Searle and won’t be further elaborated on here.    

2.2. GMDH 

The GMDH algorithm was first introduced by 1971 when Ivakhnenko described an inductive, deep learning 
method that would model the input-output relationship of a complex system using a multilayered perceptron-
type network structure (Ivakhnenko 1971). The objective of the GMDH algorithm is the construction of a high-
order Kolmogorov-Gabor polynomial of the form 

 1 0
1 1 1 1 1 1

( ,..., )
M M M M M M

M i i ij i j ijk i j k
i i j i j k

Y x x a a x a x x a x x x
= = = = = =

= + + + +     (1) 

which connects a vector of input variables ܺ(ݔଵ, ,ଵܽ)ܣ ெ) to the output variable Y by determiningݔ⋯,ଵݔ ܽଶ,⋯ܽெ), the vector of summand coefficients (Farlow 1981). 
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The basic approach of GMDH is that each neuron in the network receives input from exactly two other neurons 
with the exception of the neurons representing the input layer. The two inputs, xi and xj are then combined to 
produce a partial descriptor based on the simple quadratic transfer function 

 
2 2

i j i j i jy a bx cx dx ex fx x= + + + + +  (2) 

where the coefficients a..f are determined statistically using a least squares regression and are unique for each 
transfer function. The coefficients can be thought of as analogous to weights found in other types of neural 
networks. The network of transfer functions is constructed one layer at a time. The first network layer consists 
of functions of each possible pair of n input variables (zeroth layer) resulting in n⋅(n-1)/2 neurons. The second 
layer is created using inputs from the first layer and so on. The first network layer therefore consists of a set of 
quadratic functions of the input variables, the second layer involves fourth degree polynomials, the third layer 
includes eighth degree polynomials etc. A selection process is employed to limit the size of the network by 
culling neurons at each layer based on a performance criterion. The way in which this is done represents an 
important feature of the GMDH algorithm. The efficient PESS (predicted error sum of squares) criterion is 
used to rank neuron performance. 

 ( )( )
2

1

1
ˆ,

N

t t t
t

PESS y f x a
N =

= −   (3) 

Where ˆta is the estimation of unknown parameters on the complete data set from which the tth observation has 

been excluded. PESS is an external criterion but does not require the explicit subdivision of observed data into 
training and validation sets since it employs cross validation techniques internally. The sum of all N validations 
provides a measure of how consistent a model is when applied to new data, and thus helps to avoid overfitting. 
The best performing neurons in each layer can be selected based on their resulting PESS. The GMDH algorithm 
automatically terminates once the performance of the network begins to deteriorate. 

Unlike other types of neural network approaches to modelling data, GMDH provides a fully portable, symbolic 
description of the final network or model in the form of a polynomial function. 

Being a fully inductive process, GMDH presents some very appealing features such as: 

• Fully automatic structural and parametric optimisation of the network. 

• Optimal complexity of the model structure is found, adequate to the level of noise in data sample. For 
real problems, with noisy or short data, simplified optimal models are more accurate. 

• The number of layers and neurons in hidden layers, model structure and other optimal neural networks 
parameters are determined automatically. 

• It automatically finds interpretable relationships in data and selects effective input variables 
accordingly. 

• It guarantees that the most accurate or unbiased models will be found – method does not miss the best 
solution during sorting of all variants (in the given class of functions). 

2.3. Sensitivity analysis 

Lambert and co-workers have recently shown that the GMDH can be used to construct a high dimensional 
model representation (HDMR) that can be used to calculate first and second order Sobol sensitivity indices 
(Lambert et al. 2016).     

Assume that we have a function ( )XY that is square-integrable and defined within the unit hypercube [ ]0,1
M

, 

it is possible to decompose ( )XY  into a sum of elementary functions (Hoeffding 1992): 

 1 0 12 1 2
1 1

( ,..., ) ( ) ( , ) ( , , , )
M M

M i i ij i j M M
i i j M

Y x x f f x f x x f x x x
= ≤ ≤ ≤

= + + + +     (4) 

where 0f  is a constant expressing the zeroth order effect which is simply the mean of all outputs. The first 

order term, ( )i if x  represents the influence of the individual inputs ix  acting independently on the output ( )XY
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. ( )ij i jf x x  are functions associated with the interactive influence on ( )XY  from ix  and ix  acting together. 

As the series progresses, higher order terms represent the correlation effects between larger ranges of input 
variables. This meta-representation of the original function ( )XY is often referred to as a high dimensional 

model representation (HDMR) (Rabitz et al. 1999). Typically, HDMR expansions truncated at second order 
have been sufficient to describe many high dimensional systems. There are various methods for determining 
Sobol sensitivity indices from HDMR which won’t be generally discussed in this paper, rather we will focus 
our attention on the random sampling HDMR (RS-HDMR) method. In order to reduce the overall sampling 
effort, RS-HDMR can employ different analytical basis functions, such as orthonormal polynomials, cubic B 
splines, and polynomials to approximate the RS-HDMR component functions. Only one set of random 
input−output samples is necessary to determine all the RS-HDMR component functions, and a few hundred 
samples may give a satisfactory approximation, regardless of the dimension of the input variable space (Li, 
Wang, and Rabitz 2002). 

The RS-HDMR approach approximates the lower order component functions by an expansion of an 
orthonormal polynomial basis set as  

1

( ) ( )
k

i
i i r r i

r

f x xα ϕ
=

≈  

1 1

( , ) ( ) ( )
l m

ij
ij i j pq p i q j

p q

f x x x xβ ϕ ϕ
= =

≈  

(5) 

where k, l and m are the predefined polynomial orders 

A sparse representation of Eq. (4) can now be rewritten as (terminating at order 2) 

 1 0
1 1 1 1 1

( ,..., ) ( ) ( ) ( )
M k M l m

i ij
M r r i pq p i q j

i r i j M p q

Y x x c x x xα ϕ β ϕ ϕ
= = ≤ ≤ ≤ = =

= + +    (6) 

The decomposition coefficients in (6) can be used to calculate the partial variances as :  

 
2

1
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And the first and second order Sobol sensitivity indices can be calculated as follows: 

 i
i

D
S

D
=   (9) 

 
ij

ij

D
S

D
=  (10) 

where D is the total variance of ( )XY . Ideally, the sensitivity indices will sum to unity such that 

 
,

1i iji i j
S S+ =   (11) 
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3. METHODOLOGY 

This study is based on modelled fine sediment loads 
at the locations of the 136014A gauging station in the 
Burnett catchment. The contributing are for this 
drainage point is 33,020 km2. 

A set of model parameters have been chosen to 
represent each geophysical process influencing the 
generation and delivery of fine sediment to the stream. 
Most of these parameters are considered as variable in 
the model context and can be used for model 
calibration. Although the sediment dry bulk density 
parameter, ρs, is a well-defined geophysical property, 
it is proportional to the contribution of streambank 
erosion to the total delivered sediment load and is 
therefore a useful proxy representing this process in 
the sensitivity analysis. To help ensure the evenness 
of sampling over the range of the parameters given in 
Table 1, a 257 sample nearly orthogonal latin 
hypercube (Gu and Yang 2013; Cioppa and Lucas 
2007; Kleijnen et al. 2005) was constructed to define 
the set of input vectors, X. No further model 
evaluations were required to calculate the Sobol 
sensitivities for these parameters. 

For the RS-HDMR, the variables xi first need to be rescaled by some suitable transformation such that 0 1ix≤ ≤
. A set of synthetic parameters are constructed using orthogonal polynomial functions resulting in an expanded 
input basis ,p iX  where p refers to the polynomial order such that , ( )p i p iX xϕ=  where ( )p ixϕ  is the shifted 

Legendre function ( )p iP x  given by the terms:  

1( ) 3(2 1)P x x= −  
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P x x x = − + 
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(12) 

or alternatively using a variation of Rodrigue’s formula (Horner 1965) 

 22 1
( ) ( )

!

n
n

n n

n d
P x x x

n dx

+= −  (13) 

These shifted Legendre polynomials obey the following orthonormal condition over the interval 0 ≤ ݔ ≤ 1 

 
1

0
( ) ( )m n mnP x P x dx δ=    (14) 

The synthesised expanded input data set along with the output vector Y can now be used to estimate the optimal 

coefficients i
rα  and ij

pqβ  using the GMDH alogorithm and deriving (6) from (1). Armed with these coefficients, 

partial variances and Sobol indices can be calculated according to equations (7) to (10). 

Table 1. Model parameters and range of values used in 
sensitivity analysis 

Parameter Description 
Range of 
values 

HSDR Hillslope sediment 
delivery ratio 

0-15 (%) 

GSDR Gully sediment 
delivery ratio 

0-15 (%) 

ρs Sediment dry bulk 
density 

0-3 (t/m3) 

Vp Floodplain deposition 
settling velocity 

10-7-10-4 (m/s) 

ωmob 

Channel average 
terminal fall velocity 
for fine sediment 
remobilisation 

0-1 (m/s) 

ωdep 

Channel average 
terminal fall velocity 
for fine sediment 
deposition 

10-6-10-4 (m/s) 
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4. DISCUSSION AND CONCLUSIONS 

The sensitivity indices of the input parameters listed in Table 1 have been estimated using the GMDH RS-
HDMR method with the results are provided in Table 2.  

A 5 year period ranging from 1st July 2007 to 30th June 2012 has been considered for the sensitivity analysis. 
Within this timeframe, years 1, 2, 3 and 5 can be regarded as “typical” weather years with modelled sediment 
loads averaged over the parameter range deviating marginally from their respective average of around 9.33×106 
kg/y. Year 4, which represents the year commencing 1st July 2010 is clearly an exceptional case with an average 
modelled fine sediment load of 241.5×106 kg/y which is a greater than 20 fold increase in comparison to the 
synoptic years. The large movement of sediment in Year 4 can be attributed to a single extraordinary flood 
event in the Burnett catchment occurring in late December 2010.   

Table 2. Average annual sediment loads and sensitivity indices. Only indices ≥ 0.01 are included. Year 1 
refers to the period 1st July 2007 – 31st June 2008.  

 Time Period 

Value/Parameter Year 1 Year 2 Year 3 Year 4 Year 5 Average 

Average Load (106 kg/y) 9.8 5.4 11.6 241.5 10.5 55.7 

S1 (HSDR) 0.62 0.74 0.63 0.07 0.69 0.14 

S2 (GSDR) 0.03 0.02 0.06 0.02 0.03 0.02 

S3 (ρs) 0.33 0.24 0.31 0.70 0.27 0.68 

S4 (Vp) 0.00 0.00 0.00 0.02 0.00 0.03 

S5 (ωmob) 0.02 0.00 0.00 0.12 0.01 0.11 

S3,5 0.00 0.00 0.00 0.08 0.00 0.03 
 
It can been seen in Table 2 that an effect of the December 2010 event is a significant increase in the S3 index 
and reduction in the S1 index and this distortion carries over to the 5 year average indices. Only weak second 
order effects coupling streambank erosion and channel remobilisation are reported, and this effect only 
becomes significant in Year 4 with an index of 8%.  

The sensitivity analysis indicates that when aggregating the 5 year set of modelling results through averaging, 
a strong bias is introduced due to the unusual conditions in Year 4. These results, where the influence of a 
single event overwhelms the contributions from the remainder of the time series, would have important 
implications for parameter calibration. One strategy that may account for this in a balanced way would be to 
conduct a multi-objective optimisation which would allow for more flexibility in identifying the most suitable 
set of model parameters (Shafii and De Smedt 2009).  

Further work on the GMDH RS-HDMR Sobol sensitivity analysis algorithm is currently underway. The 
method described here has been implemented as a Python script and is being developed into a standalone 
package and a more detailed summary of the technical aspects and applications of the method will be reported 
elsewhere.  
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