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Abstract: The near-shore ocean ecosystem is influenced by catchment runoff. The Great Barrier Reef has 

been experiencing significant water quality deterioration over the past 150 years, due in part to agricultural 

intensification and urban settlement in adjacent catchments (Thorburn et al., 2013). There is a need for us to 

understand the influences of catchment characteristics on stream water quality, with an aim to mitigate and 

manage the water quality issue in the terrestrial stream runoff derived from the adjacent Great Barrier Reef 

catchments. The event-based water quality monitoring data set from the Paddock to Reef Integrated Monitoring 

Program across six Natural Management Regions provides a potential opportunity to develop a data-driven 

understanding of catchment characteristics affecting water quality at the catchment scale. This requires a robust 

and reliable modelling tool to relate the monitoring data to anthropogenic and natural processes. 

In this study, monitoring data of Total Suspended Solids (TSS) and dissolved Oxidised Nitrogen (NOX) from 

32 sites across the Great Barrier Reef catchments are selected as case study constituents due to the high risk 

they pose to reef health when exported from catchments to the receiving marine environment. Also, these two 

constituents have distinct biogeochemical processes in catchments. Specifically, TSS is typically conserved 

(although mobilized and deposited) while travelling through river systems; while NOX can be potentially 

processed and removed from the system altogether. A Bayesian hierarchical linear modelling framework is 

adopted, due to its ability to borrow strength among sites, allowing information to be transferred across space, 

and due to its ability to provide uncertainty of the predictions. The Bayesian hierarchical linear regression 

model in this study is developed to evaluate the significance of various catchment characteristics (e.g., land 

uses, catchment topography and geology) on spatial variation in water quality.  

The main findings of this study are listed as follows, 

• Sites located in the Burdekin and Fitzroy Natural Management Regions tend to have greater TSS 
concentrations, illustrated by the modelled site-specific spatial random effects (deviation from the overall 
average concentration). Additionally, grazing and dry land agriculture land uses are positively correlated 
with the spatial random effect on TSS. The complexity of interaction between different catchment 
characteristics (e.g., land use and topography) can potentially result in a negative spatial random effect on 
TSS, which is reduced in the relatively steeper Great Barrier Reef catchments with a denser stream 
network.

• Sugar cane is one of the most significant NOX contributors according to the modelling results, likely 
partially due to the excessive application of fertilizers; however, conservation land use has limited effect 
on NOX removal, indicating denitrification process alone may not be sufficient to remove NOX. 

The modelling results demonstrate different land management strategies are required for the purpose of 

reducing different constituents. This work will provide scientific insights for water quality management at the 

catchment scale. 
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1. INTRODUCTION

In coastal areas around the world, coral reefs are being degraded. In an Australian context, the coral cover in 

the Great Barrier Reef has declined significantly, due to a range of threats. Water quality degradation is one of 

these threats. The Great Barrier Reef marine ecosystem has been experiencing significant water quality 

deterioration due in part to agricultural intensification and urban settlement in adjacent catchments. The 

degradation of water quality in rivers draining into the Great Barrier Reef is primarily caused by agricultural 

land-derived, non-point source pollutants including fine sediments, nutrients and pesticides (Brodie et al., 

2013). There is an evident link between elevated terrestrial runoff carrying pollutants, and the degradation of 

coral reefs in the Great Barrier Reef lagoon (Thorburn et al., 2013). However, water quality in streams is highly 

variable across space and time, and many factors influence water quality dynamics and pollutant generation 

and transport, so managing it is a challenge. 

Differences in land use and catchment characteristics are likely to be responsible, in part, for spatial variability 

in water quality, therefore it is important to understand the link between land use and catchment characteristics, 

and water quality behavior. In this study, we use a Bayesian hierarchical modelling (BHM) framework to 

investigate the effects of land use and catchment characteristics on spatial variability in water quality. Bayesian 

Hierarchical Modelling has been implemented in complex ecological and environmental studies, to understand 

the complex interrelated nature of multivariate systems (Wan et al., 2014). Bayesian hierarchical modelling 

can provide estimates of the uncertainty in model predictions. This is because it can consider uncertainties in 

the model parameters, observed data, and discrepancies between model structures and true natural processes. 

Therefore, estimates are more reliable and can provide insights into decision-making (e.g., water quality 

management policy) under scenarios with high uncertainty.  

In this study, spatial variability in Total Suspended Solid (TSS) and Oxidised Nitrogen (NOX, a major form of 

Dissolved Inorganic Nitrogen) across 32 water quality monitoring sites is evaluated using a Bayesian 

Hierarchical Modelling framework. The two constituents are selected for different reasons. Fine sediments 

(often derived from soil erosion) results in a 

reduction in the light that is essential for organisms 

in marine ecosystems, including seagrass and 

coral. Fine particulate sediments and organic rich 

flocculent masses can also smother marine 

organisms (Brodie et al., 2013). NOX is closely 

linked to the decline in coral cover, since excessive 

NOX facilitates outbreaks of the crown-of-thorns 

starfish, a major coral predator, and also the 

occurrence of coral bleaching (Hoegh-Guldberg, 

1999). They are also controlled by different 

processes within the catchment so should exhibit 

contrasting behaviors.  

This paper aims to investigate the complex 

influences of land use and catchment 

characteristics on water quality under 

uncertainties. This can inform the design of land 

management practices that aims to reduce 

pollutant loads and protect the marine ecosystem.  

2. METHODOLOGY

2.1. Study area and materials 

In GBR catchments, there are six Natural Resource 

Management (NRM) regions (Figure 1).  Climate 

within the GBR catchment ranges from tropical to 

subtropical, with highly variable rainfall across the 

area. Coastal areas (Cape York, Wet Tropics and Mackay-Whitsunday) receive significantly higher rainfall 

than the inland areas (Burdekin, Fitzroy and Burnett-Mary). Therefore, there is more dense settlement and 

intensive agricultural landscape in the coastal catchments. 

Figure 1. Location of 32 water quality monitoring 

sites in the Great Barrier Reef catchments 
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Thirty-two water quality monitoring sites in the Paddock to Reef Integrated Monitoring Program (Waters et 

al., 2014) across six Natural Resource Management regions are selected in this study. Event-based water 

quality monitoring data is obtained from the Paddock to Reef Integrated Monitoring Program, sampled between 

2006 and 2016. The selected sites and their corresponding contributing area can be delineated based on stream 

network database provided by the Geofabric from the Bureau of Meteorology (Bureau of Meteorology, 2011). 

The locations and corresponding delineated sub-catchment areas for 32 sites are shown in Figure 1. The natural 

catchment topographic and geological characteristics data were retrieved from the National Environmental 

Stream Attributes dataset (version 1.1.5) and Queensland government (Bureau of Meteorology, 2011; 

Queensland Government, 2017). The land use information is derived from a product of the Queensland Land 

Use Mapping Program (QLUMP), which represents the most recent mapping of land use features according to 

the Australian Land Use and Management (ALUM) Classification. The detailed information for each 

catchment characteristic evaluated in this study is listed in Table 1. 

2.2. Data treatment 

The raw water quality measurements are highly right-skewed with positive skewness 35.2 for TSS and 15.2 

for NOX. Therefore, data transformation is required before the Bayesian statistical modelling. The Box-Cox 

transformation (Box et al., 1964) is one widely used parametric transformation technique to improve normality. 

The power parameters used for TSS and NOx are 0.0058 and 0.1358, respectively. After application of Box-

Cox transformation, the kurtosis and skewness decrease significantly to close to 0 for these two constituents. 

2.3. Bayesian Hierarchical Modelling Structure and Implementation 

Bayesian Hierarchical Modelling decomposes the complex and poorly-understood interactions in the observed 

data into a series of conditional models, which are linked together by probability relationships, following 

Bayes’ theorem (Webb et al., 2010; Wikle, 2003).  

The individual Box-Cox transformed TSS and NOX measurements for each water quality site are predictands, 

and spatial variability of individual pollutants between sites is incorporated within the modelling structure 

using a linear regression against land use and other catchment characteristics (i.e., catchment slope, stream 

density and soil erodibility, etc.) as predictors. The detailed model structure is as follows.   

Data model: This part of the Bayesian Hierarchical Model specifies the water quality constituent concentration 

(TSS or NOx) data: 
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The data-level model assumes that the ith constituent concentration (TSS or NOx) in the jth sub-catchment, yi,j, 

follows a normal distribution, with mean µj (defined in the process model) and variance σ2 (a constant estimated 

by the observations). In that case, σ2 represents within-site variation, which includes the measurements error 

and natural variability in concentration levels within site. 

Table 1. Description and data source for catchment characteristics 

Catchment 

characteristics  
Unit  Description  Data source  

Conservation % 
Land used primarily for conservation purposes, based on maintaining the 

essentially natural ecosystems present, such as national park. 

Queensland 

Government, 2017 

Dryland agriculture % 
Land used mainly for primary production based on dryland farming systems 

(excluding grazing and sugar cane). 

Queensland 

Government, 2017 

Irrigated agriculture % 
Land used mostly for primary production based on irrigated farming (excluding 

grazing and sugar cane). 

Queensland 

Government, 2017 

Intensive uses % 
Land subject to extensive modification, generally in association with closer 

residential settlement, commercial or industrial uses (e.g. urban, utilities, roads). 

Queensland 

Government, 2017 

Water % Lake, reservoir/dam, river, channel, marsh/wetland. 
Queensland 

Government, 2017 

Grazing % 
Grazing native vegetation, Grazing modified pastures (Native/exotic pasture 

mosaic, Woody fodder plants), Grazing irrigated modified pastures. 

Queensland 

Government, 2017 

Sugar cane % Dryland Cropping (sugar), Irrigated cropping (sugar). 
Queensland 

Government, 2017 

Slope ° Catchment average slope. 
Bureau of 

Meteorology, 2011 

Stream density  km/km2 Ratio of total stream segment length of all upstream to the contributing area. 
Bureau of 

Meteorology, 2011 

Soil Erodibility / 
Degrees of erosion vulnerability using a limited set of locally relevant soil 

properties. Considering both surface soil stability and subsoil erodibility. 

Queensland 

Government, 2017 
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Process model: The mean concentration at a site, µj is defined by a constant α combined with a spatial random 

term βi,j (i.e., the deviation from the mean resulting from differences in land use/other natural catchment 

characteristics). 

jij ,   (2) 

The spatial random effect βi,j is assumed to follow a normal distribution with mean µβ,j, and variance σβ
2. 
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The mean spatial effect is modelled as a linear additive function of land use and natural catchment 

characteristics. Land use categories and catchment characteristics are explanatory covariates: 
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where, k is total number of covariates (i.e., 7 land use and 3 other catchment characteristics) evaluated in this 

Bayesian Hierarchical Modelling framework. γ0 is regression intercept parameter, and γn is regression slope 

parameter for the nth covariate. The variance term σβ
2 accounts for variations in concentration levels and spatial 

random effects between sites not captured by the site-level covariate predictor. All covariates are z-scale 

standardized (mean=0, standard deviation=1). As such, the magnitude of a coefficient indicates the effect of 

each covariate relative to other covariates (Wan et al., 2014).  

Parameter model: Model parameters (α, γ0, γn, σ ,σβ) were assumed to be independent from each other. Non-

informative uniform priors were assigned to standard deviations (σ ,σβ)  and non-informative normal 

distribution were assigned as the prior distribution for regression coefficients (α, γ0, γn) that describe the data 

model and the process model (Gelman, 2006): 
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Model Implementation 

Markov Chain Monte Carlo (MCMC) with Gibbs sampling is used to obtain samples from the posterior 

probability distribution. The MCMC simulation was implemented in OpenBUGS from R by using 

R2OpenBUGS package (Sturtz et al., 2010). The model was run with 3 chains, and 10,000 iterations for each 

chain. The first 5,000 iterations were discarded as ‘burn-in’ period to allow convergence of the Markov chains, 

and the remaining iterations were thinned by every 3 iterations (i.e., discard all but every 3rd observation) to 

reduce the effect of auto-correlation within the Markov chains when estimating the posterior distributions. The 

convergence of each chain was evaluated using the potential scale reduction factor, Rhat (at convergence, 

Rhat≈1), along with trace plots of model parameters.  

3. RESULT AND DISCUSSION

The model converged rapidly after approximately 500 iterations and the Rhat values are close to 1 for all 

monitored parameters, indicating convergence. The detailed model results and discussions for each of the two 

constituents are presented as follows.  

3.1. TSS Modelling 

Figure 2 A and Figure 2 B depict the distribution of the modelled site-specific spatial random effect β,j for TSS 

and the posterior distributions of regression parameters for each catchment characteristics, respectively. The 

site-specific spatial random effect is the difference between event-based constituent (TSS or NOX) 

concentrations and overall average concentration, which can be attributed, in part, to the differences in land 

uses and other catchment characteristics.  

As can be seen in Figure 2 A, sites in the large Burdekin and Fitzroy basins (e.g., posterior median of β,j 2.14 

for 130504B Comet River at Comet Weir, 1.86 for 130206A Theresa Creek at Gregory Highway, 1.04 for 

120002C Burdekin River at Sellheim and 0.92 for120302B Cape River at Taemas) have a large positive 

deviation from the average TSS concentration, indicating a higher risk of TSS for these catchments during flow 
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events. The land use for the majority of sites in the Burdekin and Fitzroy regions is dominated by grazing and 

dry land agriculture, indicating the significant source of suspended sediment from such land uses. This result 

is also supported by the findings from a recent modelling study, that grazing land was the largest source of TSS 

load (45 % of total exported load), and 81% of sediment generated from grazing land comes from Fitzroy 

(30%) and Burdekin (51%) catchments (Waters et al., 2014).  

To further quantify the effect of land use and catchment characteristics on spatial variability in TSS, the 

posterior distribution of the regression coefficients of the catchment characteristics in the site-level model are 

presented in Figure 2 B. The regression parameters illustrate that catchments with high erodibility and intensive 

cropping and grazing activities, experienced higher TSS concentrations in streams. The average catchment soil 

erodibility (mean ± standard deviation of coefficient 0.22 ± 0.14) and proportion of dry land agriculture (0.20 

± 0.12) provide the most significant positive contribution to spatial variability, followed by the proportion of 

the catchment used for cattle grazing. Higher soil erodibility is more likely to result in higher rates of soil 

erosion, leading to an increase in hillslope erosion. This is the major source of fine sediment, supported by the 

utility of soil erodibility dataset in Universal Soil Loss Equation (USLE) (Renard et al., 1997). Percentage of 

conservation land, catchment slope and stream density have negative effect on deviation of TSS from the mean 

concentration, but these effects are smaller and the 50% credible intervals of all these parameters cross the 0 

line of ‘no effect’. Sub-catchments with steeper slopes and denser stream network tend to have lower TSS 

concentration during the sampled events. This contrasts with previous studies which state that there is a positive 

correlation between catchment slope and suspended solids concentrations in streams, due to higher runoff 

velocity and greater erosion processes (Yu et al., 2016). The effect of slope and stream density on TSS 

illustrated by the modelling results could be explained by complexity in the interactions between different 

catchment characteristics. For example, most of the flat catchments in this study are located in inland 

catchments (e.g., the Fitzroy and Burdekin), where large areas with a high percentage of grazing might act as 

a source of sediment. Therefore, higher TSS concentrations were observed compared with coastal steeper 

catchments in Wet Tropics, Burnett Mary and Cape York regions, consistent with the findings from Varanka 

et al. (2015) and Ye et al. (2009).  

3.2. NOX Modelling 

The site-specific spatial variability in NOX is demonstrated by Figure 3 A. For several sites, the modelled 

median NOx concentration is completely above zero. These sites are located in coastal downstream regions, 

such as the Wet Tropics (e.g., median β,j of 0.57 for 110003A Barron River at Picnic Crossing, 0.52 for 1111019 

(Brodie, 2006)Russell River at East Russell, 0.59 for 113006A Tully River at Euramo), Mackay Whitsunday 

(e.g., 0.89 for 126001A Sandy Creek at Homebush and 0.51 for 125013A Pioneer River at Dumbleton Pump 

Station). In these regions, there is a high percentage of sugar cane cropping (> 8 %) in the catchments.  

 A                                                                                              B 

Figure 2. Modelling results of TSS modelling. (A) Modelled site-specific random effect β,j, and red 

horizontal bar indicating posterior median; (B) Posterior distributions of regression coefficients (γn) for 

catchment characteristics in TSS model, and red circles are estimated posterior means, short black lines are 

50% posterior credible intervals and blue lines indicate 95% credible intervals. 
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Indeed, the posterior distributions of the regression coefficients in Figure 3 B indicate that, sugar cane is one 

of the most significant factors leading to increased NOX. The 50% credible interval for sugar cane land use 

regression coefficient of 0.057 to 0.219 indicate a positive correlation between sugar cane and in-stream NOX 

concentrations. Brodie (2006) shows that typically high percentage of the N source for sugar cane is 

nitrogenous fertilizer. The strong effect of sugar cane cropping together with this suggests that nitrogenous 

fertilizer is likely to be the main source of NOx in stream. The mean regression coefficient of conservation 

land is close to 0, indicating its limited effect of this land use on NOX removal. A regional study conducted by 

Connor et al. (2013) revealed that high dissolved inorganic nitrogen in humid tropics areas in Queensland, 

occurs because denitrification may not be sufficient to remove NOX. The positive effects of stream density and 

slope in Figure 3 B (posterior mean of 0.15 and 0.06, respectively) indicates that NOX can be transported 

through drainage networks. These effects might reduce the residence time and retention effect in the soil for 

plant uptake, leaching to subsurface flow and denitrification. 

3.3. Management Implications 

The models indicate that the catchment characteristics influencing in-stream TSS and NOX concentrations are 

different. Therefore, different management strategies are needed for the two constituents. Specifically, to 

reduce in-stream TSS concentrations, grazing and dry land agriculture land uses should be targeted. 

Management strategies, such as fencing by land type and riparian re-vegetation in order to manage the land 

types of different vulnerability and improve the riparian vegetation restoration. In addition, management of 

vulnerable streambank and floodplain, such as installation of off stream watering points, enables grazing 

pressure to be distributed more evenly, and reduces the risk of streambank erosion. To reduce NOX 

concentration in streams, management of fertilizer application on cropping lands (e.g., sugar cane) should be 

addressed. In particular, strategies such as applying only the necessary amount of fertilizer, applying this 

fertilizer at the appropriate time and control traffic, should be adopted. These results are consistent with 

expectations that the current BMPs can reduce the water quality impacts from agriculture.  

4. CONCLUSION

This paper reveals the ability of Bayesian hierarchical regression models to evaluate the relationship between 

land use and other catchment characteristics and two water quality indicators (TSS and NOX concentrations) 

in the Great Barrier Reef catchments. The effects of land use and catchment characteristics are estimated with 

uncertainties, which is essential for informing the practice management strategies aiming at pollutant reduction. 

The modelling results illustrate grazing and dry land agriculture land uses are the most relevant to spatial 

variation in in-stream TSS concentration; while, sugar cane land use is by far the most significant NOX 

contributor. A data-driven understanding of controls on site-level spatial variation in pollutants concentration 

facilitates the prioritization of best management practices to address the deterioration of terrestrial runoff. We 

found that the current adopted BMPs in the Great Barrier Reef catchment are in line with results of the Bayesian 

      A                                                                                              B 

Figure 3. Modelling results of NOX modelling. (A) Modelled site-specific random effect β,j, and red 

horizontal bar indicating posterior median; (B) Posterior distributions of regression coefficients (γn) for 

catchment characteristics in NOX model, and red circles are estimated posterior means, short black lines are 

50% posterior credible intervals and blue lines indicate 95% credible intervals. 
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hierarchical modelling, suggesting that the current mitigation strategies are appropriate for reducing TSS and 

NOX concentrations in the Great Barrier Reef catchment streams. Future study opportunities involve 

incorporation of temporal covariate in data-level of the Bayesian hierarchical model to better capture the 

temporal variability in water quality; meanwhile, developing event mean concentration for individual event 

would be a potential way to better relate catchment antecedent conditions and catchment characteristics.   
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