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Abstract: High inter-annual variability of streamflow resulting from the extensive topographic variation 
and climatic inconsistency cause immense difficulties to the water planners and managers of New south Wales 
which is one of the major contributors of Australia’s agricultural production. Therefore, in this study an attempt 
is made to develop a skilful seasonal streamflow forecast method considering four major influential climate 
variables (ENSO, PDO, IOD, IPO) of south-east New South Wales. Single lagged correlation analysis is 
performed to identify their individual interactions with spring streamflow till nine lagged months and this is 
exploited as the basis for developing Multiple Linear Regression (MLR) models to examine the extent of the 
combined impact of these climate drivers on forecasting spring streamflow several months ahead. Several 
research works were carried out to forecast streamflow and rainfall for different parts of Australia using the 
climate indices as potential predictors but none of those apply the Multiple Regression analysis to explore the 
combined impact of climate indices on long lead seasonal streamflow forecast for New South Wales. Four 
streamflow stations from south-east New South Wales are selected as a case study based on their recorded data 
length with fewer missing values. The developed models with all the possible combinations, show significantly 
good results in terms of Pearson correlation(r), Root Mean Square Error (RMSE), Mean Absolute Error (MAE) 
and Willmott index of agreement (d) where the best models with lower errors give statistically significant 
correlations as 0.57 for Wee Jasper station, 0.41 Kiosk Station,0.49 for Mittagan station and 0.51 for Gundagai 
station. The best MLR models are obtained with lagged periods up to 3 months. It is evident that every time 
the combined model outperforms the model considering single climate variable in terms of Pearson 
correlation(r) which ascertains the better predictive skills of MLR models to forecast spring streamflow several 
months ahead for the study region.   
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1. INTRODUCTION 

High climate inconsistency results in even higher inter-annual streamflow variability across Australia which is 
about twice the other rivers elsewhere in the world (McMahon et al., 1992). As a consequence, it causes much 
difficulties to the    irrigators, agricultural producers, water managers and planners to allocate irrigation water 
and environmental flows, manage and operate reservoir, supply municipal water, estimate future 
hydroelectricity supply etc. Therefore, prediction of rainfall and streamflow over long time scales can help in 
low- risk decision making for water resources management (Abawi and Ludwig, 2005). 

El Nino Southern Oscillation (ENSO), which explains the variations in sea surface temperatures (SST) in the 
Pacific Ocean is one of the key climatological parameters influencing streamflow throughout Australia (Dutta 
et al., 2006). Chiew et al. (1998) and Piechota et al. (1998) found that ENSO based (SOI and SST) streamflow 
predictions in eastern Australia were better than the forecasts from climatology. 

Kiem et al. (2001) developed a seasonal streamflow forecast model (SSFM) and explored that in southeast 
Australia SOI is a better predictor for July-September and October-December streamflow and SST is a better 
predictor for January-March and April-June streamflow. Chiew et al. (2003) indicates that there exists a clear 
El Nino- streamflow teleconnection across most of Australia which is stronger than the El Nino- Rainfall 
teleconnection. Southeast Australian rainfall is influenced by four major climate drivers - ENSO, IPO (Inter 
Decadal Pacific Oscillation), PDO (Pacific Decadal Oscillation), SAM and IOD (Indian Ocean Dipole) (Duc 
et al., 2017). Wang et al. (2009) applied Bayesian joint probability modelling and identified NINO3.4 to have 
stronger impact on forecasting eastern Australian rainfall than SOI which is contradictory to Chiew et al. (1998) 
findings, who proved significant relationship of eastern and north-central Australian rainfall with SOI but could 
not find any significant correlation with SST anomalies. Another investigation (Kiem et al., 2001) was carried 
out in the Williams river catchment (New South Wales) to determine the best ENSO classification methods 
and ENSO indices from SOI, NINO3 and Multivariate ENSO Index (MEI), where MEI outperformed other 
ENSO indices in discriminating runoff variability.   

A recent attempt (Duc et al., 2017) was made using the Bayesian Model Averaging (BMA) method to analyze 
the combined impact of the four major climate drivers on the rainfall of NSW as well as to compare their 
relative contributions in the model. The correlations between ENSO phenomenon and seasonal rainfall in 
central NSW are found to be the strongest during Spring (Mcbride and Nicholls, 1983). A Bayesian Joint 
Probability model was introduced by Wang et al. (2009) to determine the best predictors for seasonal 
streamflow forecast and was applied to two catchments of eastern Australia. The greatest achievement in 
prediction of streamflow was identified during spring when climate anomalies in the Pacific Ocean acted as 
the best predictor for Murrumbidgee catchment in NSW. Some recent evidences show that Eastern Australia 
is also influenced by IOD as well as inter-decadal modulation of ENSO as a result of the PDO (Westra et al., 
2008). A combination of correlation and wavelet based methods was applied to identify the principal sources 
of variability of Sydney’s reservoir inflows which found ENSO phenomenon and PDO to be responsible with 
correlation coefficients -0.32 for Nino3.4 and -0.43 for PDO against annual reservoir inflow (Westra et al., 
2008). There exists a greater correlation of annual rainfall in Sydney with the PDO index than with SOI 
(Whiting et al., 2003).  

The aim of this study is to develop a seasonal streamflow forecasting method considering the combined impacts 
of large scale climate drivers. To accomplish the aim of this study, several oceanic and atmospheric climate 
indices are selected considering their influence on the streamflow of NSW which includes four major climate 
drivers of this region PDO, IPO, IOD and the ENSO indices. Four streamflow stations from south-east New 
South Wales are selected and for each station single lagged analysis is performed which is followed by multiple 
linear regression analysis to identify the best predictor models for forecasting spring streamflow several months 
ahead in this region. 

2. DATA AND STUDY AREA 

New South Wales is situated in the south-eastern part of Australia. For the current research, the south-east part 
of New South Wales is selected as the study area. Four streamflow stations (Figure 1) Murrumbidgee River at 
Gundagai (Station ID 410004), Goodradigbee River at Wee Jasper (Station ID 410024), Murrumbidgree River 
at Mittagang Crossing (Station ID 410033) and Cotter River at Kiosk (Station ID 410700) are selected based 
on their long data records and fewer missing values. Observed monthly streamflow in cumec, is collected from 
Australian Bureau of Meteorology (www.bom.gov.au/climate/data/) for 102 years ranging from 1914 to 2015. 
These stations have less than 0.5% missing values which are filled by the series mean of the streamflow data. 
85 years’ (from 1914 to 1998) of streamflow data was selected for the calibration of the models, while the 
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remaining 17 years’ (from 1998 to 2015) data was selected for validation in order to assess the future 
streamflow predictability of the developed MLR models. 

Five climate drivers, NINO3.4, EMI, IOD, PDO and IPO have been selected for the current study based on 
their influences on the climate of the selected region (Duc et al., 2017, Westra et al., 2008 and Whiting et al., 
2003). ENSO phenomenon has two components- sea surface temperature and atmospheric pressure which are 
intensely correlated and can be represented by two types of indicators, the SLP indicator and the SST indicator 
(Duc et al., 2017). NINO3.4 is the SST anomaly of ENSO that originates in the equatorial Pacific Ocean (5°S-
5°N, 170°-120°W). The El Nin˜o Modoki is an ocean-atmosphere coupled process, which results in unique 
tripolar sea level pressure pattern during the evolution, similar to the Southern Oscillation phenomenon of El 
Nino (Ashok et al., 2007). Therefore, this phenomenon is named as El Nin˜o–Southern Oscillation (ENSO) 
Modoki and expressed by the following equation (Ashok et al., 2007). 

                                                        EMI= SSTX- (0.5*SSTY) - (0.5*SSTZ) (1) 

Where, 

X=165°E–140°W, 10°S–10°N, Y= 110°W–70°W, 15°S–5°N, Z=125°E– 145°E, 10°S–20°N 

The Dipole Mode Index (DMI) which is a 
measure of the IOD is defined as the 
difference in SST anomaly between the 
tropical western Indian Ocean (10oS–10oN, 
50o–70oE) the tropical south- eastern Indian 
Ocean (10oS–equator, 90o–110oE). The IPO 
is described as the Pacific ENSO-like pattern 
of SST which is found in the analysis of near- 
global inter-decadal SST (Folland et al., 
1999). While IPO is defined for the whole 
Pacific Basin, PDO is defined for the North 
Pacific, pole ward of 20°N. The five oceanic 
and atmospheric climate indices data are 
obtained from Climate Explorer website 
(http://climexp.knmi.nl) while the EMI data 
is collected from the website of JAMSTEC 

(http://www.jamstec.go.jp/frcgc/research/dl/iod/modoki) for duration of 102 years (1914-2015).  

3. METHODOLOGY 

There are several engineering applications exploring relationship between two or more parameters. Regression 
analysis model is one of the popular statistical approaches, and is highly recommended for this kind of analysis. 
Multiple linear regression is the most common form of linear regression analysis. As a predictive analysis, 
multiple linear regression attempts to model the relationship between two or more explanatory variables and a 
response variable by fitting a linear equation to observed data. Every value of the independent variable ‘x’ is 
associated with a value of the dependent variable ‘y’. In many studies, streamflow forecasting has been 
undertaken using MLR model, since this model comprises many regressors to deal with the time series data 
base. 

Multiple regression models can be presented by the following equation:     ܻ = ܽ + ܾ1ܺ1 + ܾ2ܺ2 + ܿ  (2) 

where, Y refers to the dependent variable (i.e., spring streamflow for this study), X1 and X2 are two selected 
independent variables (e.g. NINO3.4, EMI, IOD, PDO or IPO for this study), b1 and b2 are the coefficients of 
two independent variables, a is constant and c is intercept or the error. 

In the present study, for the purpose of evaluating the goodness-of-fit of the models, the F-test was used to 
verify the statistical significance of the overall fit. The next statistical criterion that needs to be satisfied while 
developing a MLR model is evaluation of the statistical significance of the individual parameters of the model. 

Multicollinearity verification among the predictors is the important stage of MLR modeling. It occurs when 
the predictors are highly correlated that result in a dramatic change in parameter estimates in response to small 
changes in the data or the model. The Variance Inflation Factor (VIF) is used to ascertain the multicollinearity 

Figure 1. Map of the study area showing the locations 
of the streamflow stations. 
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among the predictors. The indicators used to identify multicollinearity among predictors are tolerance (T) and 
variance inflation factor (VIF):  (3) ݁ܿ݊ܽݎ݈݁ݐ / 1 = ܨܫܸ ,2ܴ − 1 = ݁ܿ݊ܽݎ݈݁ݐ 

Where, R2 is the coefficient of multiple determination:  ܴ2 = ܴܵܵ/ܵܵܶ = 1 – ܵܵ(4) ܶܵܵ/ܧ 
Where, SST is the total sum of squares, SSR is the regression sum of squares and SSE is the error sum of 
squares. According to (Quan et al., 2006), a tolerance of less than 0.20–0.10 or a VIF greater than 5–10 
indicates a multicollinearity problem. 

In order to ensure independence of residuals error of the model Durbin- Watson (DW) test is performed, which 
assesses the serial correlation between errors. DW parameter has a range of 0 to 4; a value of less than 1 or 
greater than 3 are certainly matter of concern (Field, 2009). 

The performance of the developed MLR models have been assessed by several statistical performance 
measures which are widely used for the evaluation of regression models. Statistical measures namely mean 
square error (RMSE), mean absolute error (MAE), Pearson correlation coefficient (r) and Willmott index of 
agreement (d) are exclusively chosen for this study. ‘d’ is defined as follows: ݀ = 1 − [∑|௬ି௫|మ]∑[(|௬ି௫̅ଵ|ା|௫ି௫̅ଵ|)మ] (5) 

Where, ݅ݕ refers to the predicted value corresponding to ith observation and   xi refers to ith observation. The 
closer the ‘d’ value to one the better the model fits the observations. The development of multiple linear 
regression models and all the relevant statistical calculations are performed using the “R Studio 3.3.1” software.  

4. RESULT  

In each of the 4 selected stations of south-east New South Wales, single lag correlation analysis is performed 
between spring streamflow at year ‘n’ and monthly (Decembern-1 to Augustn) values of the climate indices.  
The outcomes are presented in Table 1, where NINO3.4 is found to have significant correlations up to 7 
months’ lag (Gundagai station). These findings align with the study of (Wang et al., 2009) who found strong 
impact of Nino3.4 on spring rainfall in the same study region up to a lag of 2 months. Duc et al. (2017) 
explained that ENSO indices have strong impact on rainfall during Austral spring. 

Table 1. Pearson correlations (r) of lagged climate indices and spring streamflow 

 
Stations 

 
Indices 

Lagged Months 

Decn-1 Jann Febn Marn Aprn Mayn Junen Julyn Augn 

 
 

410024 

NINO 3.4      -0.27** -0.40** -0.42** -0.40** 

PDO -0.21* -0.23*  -0.19* -0.21*   -0.19* -0.21* 

IOD       -0.21* -0.29** -0.32** 

IPO -0.23* -0.23* -0.23* -0.23* -0.23* -0.23* -0.23* -0.23* -0.23* 

EMI        -0.26** -0.32** 

 
410700 

NINO 3.4      -0.19* -0.25** -0.35** -0.33** 

PDO -0.29** -0.31** -0.30** -0.32** -0.26**    -0.24* 

IOD      -0.21* -0.22* -0.34** -0.31** 

 
410033 

NINO 3.4      -0.24* 
- 

0.31** -0.28** -0.26** 

PDO -0.23* -0.26** -0.31** -0.37** -0.28**    -0.24* 

IOD -0.33**   -0.21* -0.33** -0.32** 
- 

0.33** -0.38** -0.36** 

 
 
 

410004 

NINO 3.4   -0.24* -0.24** -0.24** -0.26** 
- 

0.31** -0.34** -0.29** 

PDO -0.26** -0.26** -0.28** -0.31** -0.27** -0.22* 
- 

0.24** -0.22* -0.21* 

IPO  -0.25** -0.25** -0.25** -0.25** -0.25** 
- 

0.25** -0.25** -0.25** 

IOD      -0.19* -0.23* -0.25** -0.25** 

EMI        -0.20*  

 

It is explored that PDO has statistically significant correlation up to nine months’ lag for all four stations. This 
is similar to the assessment of Whiting et al. (2003) who discovered that PDO has greater correlation with 
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annual rainfall of Sydney than that of SOI. Westra et al. (2008) where spring inflow correlations for Nino3.4 
and PDO were found to be -0.17 and -0.19 respectively. 

Various models with different lagged months’ indices are analyzed for the four stations (Table 2) in order to 
find out the best forecasting model. For all the station, the best models with lower errors while satisfying the 
statistical limits are selected. F-test is performed to evaluate the best model that fits the population of the sample 
data while the t-test is conducted to identify the significance of the individual parameters. The best model for 
each station with their regression coefficients, variance inflation factor (VIF), Durbin-Watson statistics (DW) 
and the Pearson correlation (r) are presented in Table 2. 

Table 2. Summary of the best MLR models 

Station Name Model Constant Coefficient r Durbin- Watson VIF 

 
Wee Jasper 

 
IODJULY_ NINO3.4JULY 

 
14.70 

-3.15 
-4.80 

 
0.42 

 
1.76 

 
1.17 

Kiosk PDOAUG _NINO3.4JULY 5.91 
-0.54 
-2.68 0.45 1.73 1.30 

Mittagang Crossing PDOAUG _NINO3.4JULY 13.16 
-1.90 
-2.54 

0.35 1.16 1.30 

 
Gundagai 

 
IPOJULY _NINO3.4JULY 

 
158.12 

-18.76 
-42.94 

 
0.43 

 
1.83 

 
1.05 

     *Correlation is significant at 0.05% level 

Table 3. Performance test for the best-developed model for calibration and validation period 

Station 
Name Model 

Calibration Period Validation Period 

r RMSE MAE d r RMSE MAE d 

Wee 
Jasper 

IODJUL_NINO3.4JUL 0.45 7.51 6.04 0.53 0.57 5.47 4.39 0.63 

Kiosk PDOAUG_NINO3.4JUL 0.45 3.98 3.04 0.57 0.41 4.24 3.74 0.52 

Mittagang 
Crossing PDOAUG _NINO3.4JUL 0.35 8.91 7.41 0.44 0.49 9.73 9.30 0.38 

Gundagai IPOJUL _NINO3.4JUL 0.43 71.40 58.0 0.55 0.51 72.37 66.03 0.40 

 *Correlation is significant at 0.05% level 

It is seen from the Table 2 that VIF values for the selected models are close to one, which refers that there is 
no multi-collinearity problem between the predictors. According to Field (2009), values less than 1 or greater 
than 3 for DW test will indicate the presence of serial correlations between the model errors. So, it can be 
concluded from the results of Table 2 that the DW test of each selected model satisfies the statistical limit 
which also establishes the goodness of fit of the models.  

It is evident from the current analysis that the selected models are not only statistically significant but also have 
the potential to predict the spring streamflow of south-east New South Wales with the highest correlation of 
0.57 (at validation stage) for Wee Jasper Station. The best models are obtained with 2 months’ lag period. 
Table 3 shows the performance statistics of RMSE, MAE, index of agreement and Pearson correlation (r) of 
the best developed models for the calibration and validation periods. It is clearly evident from Table 3 that 
there is significant increment of the correlation values from calibration to validation stage for instance, ‘r’ 
increases from 0.42 in calibration period to 0.57 in validation period at Wee Jasper station. The capability of 
the developed models for forecasting spring streamflow with higher accuracy has been ensured as the values 
of RMSE, MAE and d in the validation period show good agreement with the calibration period. Significant 
increment of the Pearson correlation values has explained that the combined models have greater skills for 
predicting streamflow than the single lagged indices. For example, at Wee Jasper station, while the single 
Nino3.4 and IOD models with 2 months’ lead time had a correlation(r) -0.42 and -0.29 respectively, the 
predictability was significantly enhanced by the combined contribution of these two indices with two months’ 
lead time in the MLR analysis (r=0.57). Four of the selected indices NINO3.4, IOD, PDO and IPO were proved 
to be influential on spring streamflow of south eastern NSW whereas, little or no influence of EMI was found 
on spring streamflow of the study regions. The ability of the MLR models to simulate observed streamflow as 
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well as to predicted future streamflow have been 
explained through the time series plots in Figure 2. 
In the time series plots, some over-estimations of 
the models are observed during the validation stage 
which, may be resulted from the “millennium 
drought” (Bond et al., 2008) periods that occurred 
from 1994 to 2010 over the continent. It was 
explored by Kiem et al. (2009) that a combination 
of climate drivers in the Pacific Ocean (ENSO, 
PDO), IOD and SAM were responsible for the past 
three droughts in south-east Australia; the 
‘Federation’ drought (1895-1902), the ‘World War 
II’ drought (1937-1945) and the ‘Big Dry’ (1994-
2010).   A model based on only two climate indices 
(Nino3.4 and PDO) is not likely to replicate an 
unusual phenomenon like “millennium drought”. 
This can also be the reason of not reflecting the 
unusually high rainfall of 1950 of NSW in the time 
series plots, where the difference between the 
simulated and observed flow is found to be high 
(Vandome et al., 2001).  

A comparison with the previous studies of 
forecasting streamflow is shown in Table 4 
where it is that the combined MLR model show 
better agreement with streamflow compared to 
the single correlation analysis of different 
climate indices with streamflow.  

5. CONCLUSION 

In this study, an effort is made to explore the 
potential skill of the combined climate indices to 
forecast spring streamflow of south-east New 
South Wales with a longer lead time than the 
usual practice. In order to identify the best 
combination of predictors, Multiple Linear 
Regression models are developed based on the 
individual lagged correlation of each climate 
variable with spring streamflow. 

Further statistical analysis has been carried out for each combination of climate variables for different lagged 
months and the models that produce higher correlation (r) with spring streamflow as well as satisfy all the 
statistical limits significantly during both the calibration and validation periods, are proposed to be the best 
combined models for the corresponding stations. 

Four of the selected indices (NINO3.4, PDO, IOD and IPO) have shown statistically significant correlations 
up to nine months’ lag for all the four stations during their single lagged analysis which, ultimately generate a 
good number of combinations for the MLR analysis. The developed models with all the possible combinations 
show significantly good results in terms of Pearson correlation (r), Statistical error analysis (RMSE and MAE) 
and d value, where the best models with lower errors give statistically significant correlations as high as 0.57 
for Wee Jasper Station, 0.41 for Kiosk station, 0.49 for Mittagang Crossing and 0.69 for the Murrumbidge 
Station. It is noteworthy that every time the combined model outperforms the models considering single climate 
variable in terms of Pearson correlation (r), which is the evidence of better predictive skills of the MLR models. 

As NINO3.4, PDO, IOD and IPO are the major climate drivers of NSW, the model accounting their combined 
effect can be one of the key tools for predicting seasonal streamflow for this region. The interactions between 
other climate variables and streamflow of different seasons in all regions of NSW will be effective measure of 
solving water management problem and such analysis will be attributed to our future research.  

Table 4. Comparison with the previous studies based on 
highest correlations between indices and spring streamflow 
for South-East Australia 

INDICES Kirono 
et al.  

(2010)  

Chiew et 
al. (2003)  

Current Study 

Single 
lagged 

correlation 

MLR 
correlation 

Nino3.4 - - -0.42iv 0.57viii 
IOD - - -0.38v 

 

Nino3 0.35i - -0.32vi 
 

SOI 0.36ii 0.51iii -0.53vii 
 

i) 8 months lagged Nino3  ii) 12 months lagged SOI 
iii) Winter SOI                   iv) 2 months lagged Nino3.4 
v) 2 months lagged IOD vi) 3 months lagged Nino3.4 
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