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Abstract: In last few decades, Australia experiences several extreme floods, bushfires and droughts. The 
consequences of these natural calamities have great social, environmental and economic impacts. Therefore, 
having a reliable seasonal forecasting of rainfall is highly important to withstand these situations as rainfall is 
mostly correlated with extreme flood, bushfire and drought incidents. Over decades, scientists and researchers 
are looking for reliable forecasting systems, which could provide definite predictions of rainfall that is essential 
for water management, agricultural production and flood management systems and mitigating such destructive 
situations by proper planning and management. Rainfall forecasting using climate indices has become one of 
the best ways to predict rainfall variability in many parts of the world. This strategy has also been proved as 
an effective tool to determine such variability. As Australia is affected by many different weather systems, 
several studies have been conducted to identify potential climate indices like Indian Ocean Dipole (IOD), El 
Nino Southern Oscillation (ENSO), Southern Annular Mode (SAM), Blocking highs, MODOKI and their 
interactions with rainfalls in different parts of Australia. Different regions of Australia have been exposed to 
different climate indices, so it is often recommended to study different regions separately to understand the 
effects of climate indices and their effectiveness to predict long-term rainfall. This study explores the seasonal 
variability of rainfall in Western Australia (WA) considering the effects of dominant climatic indices 
responsible for this region and develop a rainfall model for predicting Western Australia seasonal rainfall using 
potential climate indices. Very few studies have ever been found which had a primary concentration in 
determining rainfall variability in WA. Moreover, most of these studies has evaluated concurrent relationship 
between rainfall and climate indices. While a very few studies were conducted on concentration of lagged 
relationship between climate indices and seasonal rainfall. This study explores the significant correlation 
among lagged climate indices with autumn rainfall for north coast region of Western Australia (NCWA). To 
do so, two stations (Mingenew and Northampton) from NCWA were considered for this study. From the single 
statistical correlation analysis, it was found that DMI (IOD indicator), SOI, Nino3.4 and Nino4 (ENSO 
indicators) and ENSO Modoki Index (EMI) have shown significant correlation with autumn rainfall for these 
two stations. Several multiple regression analysis were conducted using lagged ENSO and DMI and lagged 
DMI and EMI as a combined predictor of autumn rainfall. Results showed that multiple regression has 
significantly increased the correlation between autumn rainfall and climate indices than single correlation 
analysis. Lagged DMI-Nino4 model showed highest correlation (0.38) for Mingenew and (0.44) for 
Northampton. Developed models were tested with out of sample dataset and statistically significant models 
were suggested to forecast long-term rainfall for this region. 
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1. INTRODUCTION 

Rainfall forecasting is an important issue, which can address valuable strategies to withstand climate challenges 
such as flood, drought and bushfire. Effective and reliable forecasting models can help in disaster management, 
water management, agricultural production, flood management systems and hence can play major role in 
decision making approach during crisis period. Rainfall forecasting can be done statistically and dynamically 
(Goddard et al., 2001). Statistical methods are quite straightforward but need reliable sources for data 
extraction. Empirical relationships between observed variables are investigated through statistical tests and 
finally prediction equations can be developed if certain statistical criteria are met. For statistical methods, 
availability of uninterrupted data is required. On the other hand, dynamical forecast involves numerical 
simulations, which are comparatively complex to analyses and expensive to implement (Anderson et al., 1999; 
Schepen et al., 2012). Moreover, the effectiveness of prediction models developed through complex dynamic 
methods has often found as questionable. This is due to the failure of complex dynamic methods to outperform 
simple statistical prediction models (Halide and Ridd, 2008). Therefore, simple statistical climate prediction 
models often become the first choice to many researchers due to its simplicity, cost effective and easy to 
implement characteristics. 

Over years, many studies were conducted in order to evaluate relationships between climate indices and 
Australian rainfall. Among many, few studies were conducted on entire Australia, while the rest were 
conducted on specific regions within Australia. Studies that considered the entire Australia includes: (Cai et 
al., 2011; Schepen et al., 2012). On the other hand, detailed studies were conducted on several parts of 
Australia, where an insight on local climate indices were used to explain the rainfall variability. Such studies 
were conducted on rainfall behaviour of Southwest Western Australia (Feng et al., 2010; Ummenhofer et al., 
2008), South Australia (Cai et al., 2011; Neville Nicholls, 2010; Tozer, 2015), Queensland (Abbot and 
Marohasy, 2012), Western Australia (Fierro and Leslie, 2013; Islam et al., 2016), Southeast Australia and East 
Australia (Mekanik and Imteaz, 2014; Murphy and Timbal, 2008). 

Most of these studies were mainly focused on concurrent relationships between rainfall and climate indices. 
But, evaluating the lagged relationship among the climate indices and rainfall also requires special attention. 
This is because concurrent relationship does not offer enough flexibility and sufficient time for precautionary 
measures and efficient disaster management strategies. On the other hand, lagged relationship can predict 
future seasonal rainfall several months’ advance which could be useful for sustainable use of land and water 
resources, disaster management, emergency and evacuation planning.  

From current literatures, it was evident that very limited number of studies were conducted on lagged 
relationships between seasonal rainfall and climate indices (e.g. Drosdowsky and Chambers, 2001; Hasan and 
Dunn, 2012; Schepen et al., 2012). Hasan and Dunn (2012) investigated one-month lag relationship between 
climate indices and Australian rainfall while Drosdowsky and Chambers (2001) investigated the predictability 
of Australian rainfall using 1 to 3 months lagged predictors for different seasons and locations. These findings 
were further strengthened by Schepen et al. (2012), who showed the strength of lagged climate indices to 
predict seasonal rainfall in Australia. Most of these studies were limited to maximum 3 months lagged period 
and they did not show any combined application of climate indices for forecasting seasonal rainfall. Risbey et 
al. (2009) stated that only one climate indices cannot predict future rainfall precisely because other climate 
indices can also be responsible for rainfall generation. In this regard, very few have investigated combined 
influence of climate indices. However, their concentration of study was strictly limited to concurrent 
relationships only.  

Rainfall in Western Australia varies according to the location investigated, as different indices plays their role 
at different locations. To date, most of the studies were focused on concurrent relationship between climate 
indices and rainfall however; no study has evaluated lagged relationship to predict future seasonal rainfall in 
NCWA. This study will evaluate the lagged relationship among climate indices and seasonal rainfall in NCWA. 
Moreover, rainfall prediction models will be developed by using linear techniques. To do so, two rainfall 
stations from NCWA has been considered. Effect of potential climate indices namely ENSO grouped indices 
and DMI will be analysed against WA rainfall as they showed significant contribution to the variability (Fierro 
and Leslie, 2013; Ummenhofer et al., 2008).  

2. DATA  

2.1 Rainfall  

Two rainfall station namely: Mingenew and Northampton from NCWA have been selected as a case study. 
These rainfall stations were considered based on their continuous rainfall data availability. 100 years 
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continuous monthly rainfall data was derived from the website of Bureau of Meteorology. Only Autumn 
rainfall (March to May) data from the year 1916 to year 2015 were considered in this study. 

2.2 Climate Indices 

Based on the available literature, it was apparent that El Nino Southern Oscillation (ENSO), ENSO Modoki 
Index (EMI) and Indian Ocean Dipole (IOD) are most interactive climate indices for Western Australia. Among 
these indices, ENSO and IOD exist in Pacific and Indian Ocean respectively. ENSO grouped indices are 
illustrated by two indicators: SLP and SST anomalies. ENSO grouped indices includes Southern Oscillation 
Index (SOI), Nino 3.4, Nino 3, Nino 4 and Nino 1.2. SOI is the measure of sea level pressure (SLP) difference 
between Darwin and Tahiti in the tropical western Pacific. Nino 3.4 is the average sea surface temperature 
(SST) anomalies in western Pacific bounded by 5°N to 5°S, from 170°W to 120°W. Nino3 is the average sea 
surface temperature (SST) anomalies in eastern Pacific bounded by 5°S to 5°N, from 90°W to 150°W; while 
Nino4 is the average SST anomalies  in central  Pacific bounded by 5°N to 5°S, from 150°W to 160°E. The 
difference between El-Nino events and traditional events, which have maximum warming in central Pacific 
and east Pacific, is denoted as ENSO Modoki Index (EMI). Indian Ocean Dipole (IOD) is also measured by 
Dipole Mode Index (DMI). The variation of average Sea Surface Temperature generated between tropical 
western Indian Ocean bounded by 10°N to 10°S, from 50°E to 70°E and the tropical south-eastern Indian 
Ocean bounded by 10°S to equator, from 90°E to 110°E is known as DMI (Saji et al., 1999). Apart from EMI, 
all other climate indices data was derived from Climate Explorer website ( http://climexp.knmi.nl/). EMI data 
was obtained from the website: (http://www.jamstec.go.jp/frcgc/research/d1/iod/modoki ). 

3. METHODOLOGY 

To establish relationship between climate indices and rainfall, linear technique has been used in this study. 
Simple linear relationship has been employed to determine significant correlation between lagged climate 
indices and rainfall. After that, multiple linear regressions technique was used to determine the predictability 
of rainfall using two or more climate indices. The methodology of this technique are explained in details in 
following sections. 

3.1. Multiple Linear Regression 

Multiple linear regression is the statistical measure that determine the best linear relationship between a 
dependent variable and several independent variables. For the evaluation of the best fit of the model, least 
square method is used. Dependent variable is also called outcome variable while independent variables are 
called Predictors. 
      The equation for this model is given below: 

Y= a + b1X1+ b2X2+e      (1) 

Where, Y is the dependent variable (i.e. Autumn Rainfall in this study); X1 is the first independent variable (i.e. 
lagged DMI) and X2 is the second independent variable (i.e. lagged ENSO); b1 and b2 are the model coefficient. 
a is constant and e is error. 

Three assumption check is necessary before conducting linear regression analysis; these are linearity, equal of 
variance and normality. In linearity check, linear relationship between dependent and independent variable is 
checked, in equal of variance the spread of the residuals are checked and in normality check data distribution 
is checked whether it is normally distributed or not. If selected variables satisfy all these assumption check, 
linear regression analysis can be proceeded.  

3.2. Model Performances Analysis 

For any developed regression model, it is recommended to check the goodness of the fit of the developed 
model. It can be checked by evaluating statistical tests namely: hypothesis testing (F-test), R squared and 
analyses of residuals. F-test is used to verify statistical significance and compare different models to evaluate 
and identify the model that best fitted the sample data. Another test called t-test is conducted to verify the 
parameters are statistically significant at 95% confidence level. 

Another important evaluation for regression modelling is Multicollinearity and Durbin-Watson (DW) test. In 
regression modelling, when independent variable are highly correlated to each other is called Multicollinearity. 
Two indicators namely Variance Inflation Factor (VIF) and Tolerance (T) are used to identify Multicollinearity. 
Lin (2008) stated that, tolerance value less than 0.10-0.20 and VIF value greater than 5-10 indicates 
Multicollinearity. Durbin-Watson (DW) is another important parameter, which identify the autocorrelation 
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among the residuals. According to Field (2013) DW value lower than 1 or greater than 3 indicates 
autocorrelation. Several statistical parameters namely Pearson Correlation Coefficient (R), Root Mean Square 
Error (RMSE), Mean Absolute Error (MAE), Willmott Index of Agreement (d) have been calculated to check 
the fitness of the developed regression models. 

All these statistical analyses were conducted by using IBM Statistics 24 software. Initially, single correlation 
analysis was performed. Results that showed significant correlation (1% and 5%) are considered for the 
multiple regression analysis. In this study, total data collection period for both rainfall and climate indices is 
100 years. These data were divided into two stages namely: calibration stages and validation stages. Data 
dividation was done by following the ratio (2/3 for calibration and 1/3 for validation) of World Meteorological 
Organization (WMO) standard verification system (Ferranti, 2012; Vaze et al., 2012). 

4. RESULT AND DISCUSSION 

At first three assumptions check (mentioned in section 3.1) were carried out to check the requirement of 
regression analysis. After that, a descriptive statistics for all the selected variables were created (Table 1). 

Table 1. Descriptive Statistics for all variables 

Variables Data Size (N) Minimum Maximum Mean Standard Deviation Variance 
Mingenew 70 5.93 97.37 33.39 17.59 309.44 

Northampton 70 9.50 116.60 37.66 21.59 466.12 

DMI 70 -0.53 0.73 0.002 0.23 0.05 

SOI 70 -2.66 2.27 -0.01 0.86 0.74 

Nino3.4 70 -1.50 1.73 -0.04 0.68 0.47 

Nino3 70 -1.54 2.00 -0.13 0.73 0.54 

Nino4 70 -1.41 0.71 -0.07 0.46 0.21 

EMI 70 -0.99 0.61 0.04 0.31 0.09 

Single correlation analyses were conducted between climate index and selected rainfall stations. In this study, 
lagged monthly values (Junen-1 to Februaryn, Here, n is the predicted rainfall year and n-1 is the previous year) 
of climate index and autumn rainfall (March-April-May) are considered to perform the analyses. From the 
analyses, it was evident that most of these climate indices showed significant correlation for maximum five 
months (Oct-Feb) lagged period. The outcome of single correlation analyses are presented in Table 2. 

Table 2. Outcome of Single Correlation Analyses 

Pearson 
Correlation 

Rainfall Station Month Significant Climate Indices 

DMI SOI NINO3.4 NINO3 NINO4 EMI 

 

 

R 

 

 

Mingenew 

OCT ---- ---- -0.254* -0.244* -0.245* ---- 

NOV -0.240* 0.242* -0.265* -0.273* -0.254* ---- 

DEC ---- ---- -0.290* -0.255* -0.313** -0.269* 

JAN ---- 0.256* -0.262* ---- -0.344** -0.330** 

FEB ---- ---- -0.320** -0.245* -0.366** -0.262* 

 

 

R 

 

 

Northampton 

OCT ---- ---- ---- -0.256* ---- ---- 

NOV ---- ---- -0.255* -0.273* ---- ---- 

DEC ---- ---- -0.281* -0.255* -0.280* ---- 

JAN 0.251* 0.252* ---- ---- -0.287* -0.236* 

FEB 0.375** ---- -0.298* ---- -0.330** ---- 

*Correlation is significant at the 0.05 level (2-tailed). 
**Correlation is significant at the 0.01 level (2-tailed). 

From the result of correlation analyses, it is clearly visible that, selected climate indices showed low to high 
significant correlation with autumn rainfall. This outcome has aligned with the previous findings of Fierro and 
Leslie, 2013; Ashok et al., 2007; Taschetto and England, 2009. Moreover, it is also visible that SLP based 
ENSO Index (SOI) showed low lagged significant correlation compared to SST based ENSO indices. This 
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outcome is consistent with the previous finding of Drosdowsky and Chambers (2001). According to them, SOI 
has less predictability skill for Western Australian autumn rainfall than SST based ENSO indices.  
Several model sets (Presented in Table 3) were developed using the outcome of single correlation analyses. 
These model sets were the combination of lagged DMI-Nino3.4, lagged DMI- Nino3, lagged DMI- Nino4 and 
lagged DMI-EMI. Lagged DMI- SOI model set was not considered as it showed less significant correlation. 

Table 3. Model Set for Multiple Regression for Two Rainfall Stations 

Model Set Mingenew Northampton 

DMI- Nino3.4 Nov-Oct, Nov-Nov, Nov-Dec, Nov-Jan, Nov-Feb, Jan-Nov, Jan-Dec ,Jan-Feb, , Feb-Nov, Feb- Dec, Feb- Jan 
DMI-Nino3 Nov-Oct, Nov-Nov, Nov-Dec,  Nov-Feb, Jan-Oct, Jan-Nov, Jan-Dec, Feb-Oct, Feb-Nov, Feb- Dec, 

DMI-Nino4 Nov-Oct, Nov-Nov, Nov-Dec,  Nov-Jan, Nov-Feb Jan-Dec, Jan-Jan, Jan-Feb, , Feb-Dec,  Feb- Jan, Feb-Feb 

DMI-EMI Nov-Dec, Nov-Jan, Nov-Feb Jan-Jan, Feb-Jan 

 

Multiple regression analyses and statistical measure such as Durbin-Watson, tolerance were calculated using 
these aforementioned model sets. From the results of multiple regression analyses it was found that all these 
model set are free from multicollinearity and auto correlation among the predictors. In addition, among all 
these model sets, DMI-Nino4 model showed highest significant correlation 0.38 and 0.44 for Mingenew and 
Northampton respectively. It is also evident that multiple regression has significantly increased the correlation 
between autumn rainfall and climate indices than single correlation analysis. This outcome is compatible with 
the lagged map of Schepen et al., 2012, where they depicted that climate index Nino4 has low to positive 
evidence of predicting autumn rainfall in north coast division of WA. A summary of the best regression models 
developed in this study is presented in Table 4. 

Table 4. Summary of the Selected Regression Model 

Region Station Model Constant Coefficient R Durbin-Watson Tolerance 
(T) 

VIF 

 
North 
Coast 

Mingenew DMINov 
Nino4Feb 

33.24 -7.19 
-10.03 

0.38 2.04 0.86 1.16 

Northampton DMIFeb 
Nino4Feb 

36.42 +24.17 
-9.40 

0.44 2.07 0.92 1.08 

 

After the model development in calibration period using multiple regression method, a validation test has been 
conducted. This test is required to verify the accuracy of the developed model for rainfall predictability. For 
both these calibration and validation period statistical parameters such as R, R2, RMSE, MAE and Willmott 
index of agreement (d) were calculated. Summary of the result for both calibration and validation period is 
illustrated in Table 5. 

Table 5. Summary of the Developed Model in both Stages (Calibration and Validation). 

Region Station Model Calibration Period Validation Period 

R RMSE MAE d R RMSE MAE d 

North 
Coast 

Mingenew DMINov-Nino4Feb 0.38 16.49 12.49 0.48 0.44 17.31 11.87 0.56 

Northampton DMIFeb-Nino4Feb 0.44 19.64 14.45 0.55 0.48 15.09 10.90 0.58 

 

From the outcome of these two stages, it was visible that in validation stages, correlation between rainfall and 
climate indices has been increased from 0.38 to 0.44 and 0.44 to 0.48 for Mingenew and Northampton 
respectively. Moreover, Willmott index of agreement (d) also increased in validation period which is above 
0.5. On the other hand, RMSE and MAE value was lowest in both stages. A model with lowest error, highest 
‘R’ and highest ‘d’ value is considered as a good model. From the analysis results, DMI-Nino4 model found 
as best model for predicting autumn rainfall for Western Australian north coast region. A comparison between 
observed and predicted rainfall are shown in Figure 1. 
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Figure 1. Comparison between Observed and Predicted Rainfall 

Figure 1. depicts that, the developed model followed similar rainfall pattern as observed rainfall. However, 
unfortunately the developed model could not pick the extreme rainfall cases. Some overestimation of rainfall 
is also visible in the validation stages that might be due to Millennium Drought (Dijk et al., 2013) occurred in 
Australia. Therefore, it can be said that the developed models can predict usual rainfall events, however it was 
not successful in predicting extreme rainfall cases. 

5. CONCLUSIONS 

Western Australia is the largest state of Australia and its rainfall varied according to its location. This rainfall 
variation is the result of different climate indices that influence rainfall in different location at different time. 
To date, most of the studies were focused on concurrent relationship between climate indices and rainfall 
however; no study has evaluated lagged relationship to predict future seasonal rainfall in NCWA. This study 
will evaluate the lagged relationship among climate indices and seasonal rainfall in WA. To accomplish the 
objective, single and multiple regression technique has been considered. Moreover, this will fill up the existing 
research gap that prevails in north coast of Western Australian rainfall predictability. Two rainfall stations 
namely: Mingenew and Northampton from NCWA have been chosen as a case study. Effect of potential 
climate indices namely ENSO grouped indices and DMI were analysed against WA autumn rainfall as they 
showed significant contribution to the variability. From the outcome of correlation analyses, it was apparent 
that most of these climate indices showed significant correlation up to five months (Oct-Feb) lagged period. 
After that, several model sets have been developed for multiple regression analyses. Model which showed 
highest Pearson correlation (R), highest Wilmott of Index (d), lowest RMSE; MAE and satisfy all the statistical 
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requirement selected as a best model for NCWA region. DMI-Nino4 model has been chosen as a best model, 
which fulfilled all these requirement. The performances of this model is satisfactory in terms of predicting 
autumn rainfall in normal situation but not for extreme situations like extreme rainfall and drought. This 
developed model failed to predict extreme rainfall and drought cases. This is may be the result of some other 
factors namely: temperature, wind, humidity and soil moisture, which also influences rainfall but was not 
considered in this model. In addition, this study evaluate the linear relationship between climate indices and 
rainfall only, and no non-linear relationship was considered. The application of non-linear techniques will be 
considered in future studies. 
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