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Abstract: Two geophysical timeseries may share a common low-frequency signal that is distorted by 
high-frequency noise. As such, these timeseries are often filtered to remove the high-frequency noise prior to 
performing statistical analysis. However, this filtering artificially increases the serial dependence of the 
timeseries, meaning that the assumption of independent data underlying most standard correlation tests (e.g. 
Pearson’s correlation) is violated. Monte Carlo methods that account for serial dependence when comparing 
serially dependent data are typically focused on either (a) calculating the p-value of the observed correlation 
with respect to an empirically derived null distribution,  which is derived by calculating the correlation between 
independently generated replicates of the observed data or (b) estimating sampling uncertainty in the observed 
statistic by performing a block bootstrap, with block size proportional to the serial dependence in the timeseries. 
In this study, we present a Monte Carlo test that combines these two approaches and, in doing so, explicitly 
accounts for serial dependence and sampling uncertainty when comparing two timeseries. A case study is 
presented that demonstrates the ability of the proposed method to detect statistically insignificant correlations 
when performed on filtered white noise timeseries. Crucially, existing methods accounting for serial 
dependence detected a statistically significant, spurious correlation. This demonstrates that the proposed 
method is suitable for use when performing statistical analysis on filtered timeseries.     
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1. INTRODUCTION 

Bivariate geophysical statistical analysis is complicated by (a) serially dependent processes; (b) sampling 
uncertainty due to short observational records; and (c) confounding high-frequency noise that can distort a 
common low-frequency signal shared by two timeseries. Prior to comparing two geophysical timeseries, a filter 
can be applied to extract this common low-frequency signal. However, filtering increases the serial dependence 
of a timeseries and many conventional bivariate statistical tests (e.g. Pearson’s correlation) assume serial 
independence – serially dependent data violates this assumption and reduces the number of independent 
observations (Yule, 1926). Given that geophysical timeseries are often serially dependent, and this serial 
dependence is increased if the timeseries is filtered, this assumption of independence increases the likelihood 
of making a Type 1 error (e.g., detecting a statistically significant correlation between two timeseries when 
there is none).  

Monte Carlo methods can be used to detect statistically significant correlations in the presence of serial 
dependence. These methods derive an empirical null distribution by generating independent, persistence 
preserving replicates of each time series from which the correlation is calculated (Ebisuzaki, 1997; Macias-
Fauria et al., 2012). The p-value of the observed correlation is then calculated with respect to this null 
distribution. However, these methods do not consider uncertainty in the observed correlation (i.e. sampling 
uncertainty) - the observed correlation is treated as a fixed quantity (Figure 1b). 

There are numerous methods of estimating sampling uncertainty from serially dependent data. For example, 
Mudelsee (2003) accounts for serial dependence when generating a correlation sampling distribution using the 
stationary bootstrap of DiCiccio and Efron (1996). However, this method does not compare the resultant 
sampling distribution to a reference null distribution. This may be an issue because, for different statistics, 
different types of serial dependence may result in different thresholds of statistical significance. Therefore, it 
is necessary to compare a sampling distribution with an empirically derived null distribution when determining 
statistical significance in the presence of sampling uncertainty (Figure 1c). 
 
Both the Wilcoxon-Mann-Whitney and Kolmogorov-Smirnov tests could be used to identify a statistically 
significant difference between the null and sampling distributions. However, given the large sample size of the 
null/sampling distributions (often several thousand) and that the different sampling methods used to generate 
respective distributions can result in distributions with a slightly different shape, these tests will have a high 
Type 1 error rate.  For example, sampling distributions of statistics calculated from serially dependent data also 
tend to be skewed (Politis and Romano, 1994) and may have reduced variance relative to the true null 
(Mudelsee, 2003). The Wilcoxon-Mann-Whitney and Kolmogorov-Smirnov tests are sensitive to such 
differences in skew/variance (Fagerland and Sandvik, 2009), meaning that they are unsuited for determining 
statistically significant differences between corresponding null and sampling distributions. 
 
When assessing the statistical significance of a correlation, given that geophysical timeseries are often (a) short, 
meaning they have large sampling uncertainty, and (b) filtered prior to statistical analysis, which increases 
timeseries serial dependence, there is a need to account for sampling uncertainty and serial dependence. These 
factors can be accounted for by comparing a correlation sampling distribution with an empirically derived null 
distribution. However, standard statistical tests used for comparing differences between two distributions (e.g. 
Mann-Whitney U) are not suitable for comparing these distributions. As such, in this study we propose a new, 
Monte Carlo based statistical test that can detect statistically significant correlations in the presence of serial 
dependence and sampling uncertainty. 
 
2. METHOD 

As existing methods comparing two distributions (e.g. Mann-Whitney U) are sensitive to the differences in 
skew/variance evident between corresponding null/sampling distributions, in this analysis we present a non-
parametric method of detecting statistical significance that accounts for serial dependence and sampling 
uncertainty. This method extends the Monte Carlo concepts underpinning that of Ebisuzaki (1997) to a statistic 
that gives a measure of similarity between two distributions: the overlapping coefficient. 
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The overlapping coefficient (also referred to as the proportion of overlap) refers to the shared area of two 
(possibly) intersecting probability distributions. The definition of the overlapping coefficient is shown below. 
This equation can be solved using various computational methods, which typically involve kernel density 
estimation of the respective distributions, followed by numerical integration (Schmid and Schmidt, 2006). 
Calculation method aside, the key point to note is that an overlapping coefficient of 1 indicates that the two 
distributions are identical, whereas a value of 0 indicates complete divergence. 

 

(1)              𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =  �min {𝑓𝑓(𝑥𝑥1),𝑓𝑓(𝑥𝑥2)}𝑑𝑑𝑥𝑥 

 
The overlapping coefficient is used as a diagnostic metric in various fields. For example, ecologists use the 
overlapping coefficient to compare the relative activity of different animals (Ridout and Linkie, 2009). In 
behavioural science, the overlapping coefficient is used to when comparing the relative differences between 
control and treatment groups (Cohen, 1988). The Perkins Skill Score, a metric commonly used in climatology 
to evaluate the performance of climate models, is also a calculation of overlap between modelled and observed 
climate variable distributions (Perkins et al., 2007). 
 
The proposed method, which calculates the statistical significance of the overlap between an empirically 
derived null distribution and an observed sampling distribution, involves the following steps:  

• For two time series x and y of length n, identify some bivariate statistic of interest (e.g. correlation).  

• As with the method of Ebisuzaki (1997), derive an empirical null distribution for the statistic of interest. 
This involves generating replicate time series that have the same serial dependence and length as x and y 

Figure 1. (a) Synthetic, serially dependent x and y time series; (b) empirically derived null distribution for 
the correlation between x and y assuming no association - the red dashed line is the observed correlation; (c) 
empirical null and sampling distributions for the correlation between x and y. Sampling distribution was 
derived using the method of Mudelsee (2003).  
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but with different sequencing. This distribution reflects the values we can expect from independent time 
series with the same persistence structure as the observed values.  

• Generate random, paired replicates of the time series x and y of length n. For each paired replicate, 
calculate the corresponding sampling distribution of the statistic of interest.  

◦ Various methods that account for serial dependence can be used to generate the sampling distribution. 
In this study, we use the bootstrap method of Mudelsee (2003), which is based on the stationary block 
bootstrap of DiCiccio and Efron (1996). However, other methods – such as the maximum entropy 
bootstrap of Vinod and Lopez-de-Lacalle (2009) – could also be used.  

• For each sampling distribution, calculate the proportion of overlap with the empirical null distribution. 
This is the “null overlapping coefficient” distribution - the values of the overlapping coefficient we could 
expect between the empirical null distribution and sampling distributions given the time series x and y are 
independent.  

• Using the observed time series x and y, calculate the observed sampling distribution for the statistic of 
interest. The sampling distribution must be calculated using the same method as the paired replicates.  

• Calculate the overlap between the observed sampling distribution and the empirical null distribution.  

• Calculate the percentile of the observed overlapping coefficient with respect to the null overlapping 
coefficient distribution. This percentile is the p-value of the observed overlapping coefficient. The 
statistical significance of this p-value can then be determined using standard thresholds (e.g., a p-value 
less than 0.05).   

 
3. RESULTS 
The ability of the method to detect significant/insignificant statistics in situations where standard statistical 
tests do not work well is demonstrated using an example that involves filtered timeseries. Geophysical time 
series are inherently noisy, so in many cases a filter is applied to these time series in order to extract an 
underlying signal (Mann, 2008; Thompson et al., 2018; Sanchez-Morales et al., 2019). However, filtering 
introduces artificial serial dependence, which can lead to the emergence of spurious correlations between 
filtered time series.  
 
In this analysis, we used two randomly generated white noise timeseries (Figure 2) and applied a smoothing 
spline (span of 0.7) to each (Figure 3a). The statistical significance of the correlation between the filtered 
timeseries was then calculated using (a) two existing methods typically used for serially dependent timeseries 
- the methods of Ebisuzaki (1997) and Mudelsee (2003) - and (b) the proposed method.  
 
When comparing the two timeseries, the methods of Ebisuzaki (1997) and Mudelsee (2003) both returned 
statistically significant p-values (0.008 and 0.002 respectively, Figure 3b and Figure 3c). Given that the original 
timeseries are not correlated (Figure 2), these are spurious results artificially introduced by filtering. In contrast, 
Figure 3d shows that, by accounting for serial dependence and sampling uncertainty, the proposed method 
correctly returned a statistically insignificant p-value (0.27). This highlights the potential utility of the proposed 
method – determining the significance of a correlation between filtered timeseries.  
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Figure 2. Left - two randomly generated white noise timeseries. Right - association between the two randomly 
generated white noise timeseries. 

 

 

Figure 3. (a) Timeseries in Figure 3 after the application of a smoothing spline (span of 0.7). b) Results from the 
Ebisuzaki (1997) method applied to the timeseries in (a), which identified a statistically significant correlation. c) 
Comparing null and sampling distributions for the timeseries in (a) – the sampling distribution was derived using the 
method of Mudelsee (2003), with.the 95% confidence intervals not containing 0. d) Results from the proposed 
method determining the significance of the overlap between null and sampling distributions.  Note that in (b) and (c) 
respective methods returned statistically significant correlations, whereas the proposed method (d) returned a 
statistically insignificant correlation.   
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4. DISCUSSION AND CONCLUSION 

The proposed method has widespread potential applications in geophysical timeseries analysis, which often 
filters data prior to performing statistical analysis. For example, the Interdecadal Pacific Oscillation (IPO) is a 
filtered index of basin wide Pacific Ocean sea surface temperature variability which is associated with 
increased/reduced rainfall for various regions around the world (Power et al., 1999) – the significance of these 
identified associations may be misrepresented by this filtering. Furthermore, palaeoclimate proxy data, used to 
infer climate conditions in periods without instrumental measurements, are also often filtered prior to statistical 
analysis (Sanchez-Morales et al., 2019) – once again, this filtering may misrepresent the significance of any 
associations identified using the filtered data.  
 
Although filtering of geophysical timeseries prior to statistical analysis can result in the identification of 
spurious correlations, this filtering still serves an important purpose. Given that geophysical timeseries are 
inherently noisy, and that this noise can distort common low-frequency signal, removing this noise via a filter 
is a necessary step when examining associations/relationships between geophysical timeseries. However, in 
doing so, it is important to use the appropriate statistical tools. In this study we’ve shown that, under certain 
conditions (i.e., the application of a smoothing spline with span 0.7 to two white noise timeseries of length 
100), conventional methods that account for serial dependence/sampling uncertainty when identifying 
correlations between timeseries - the methods of Ebisuzaki (1997) and Mudelsee (2003) – can produce spurious 
results. In contrast, the proposed method correctly identified that the filtered timeseries were independent, 
highlighting its potential application in identifying/not identifying correlations between filtered geophysical 
timeseries.  
 
In summary, in this study we propose a new Monte Carlo method that offers potential for statistical analysis of 
filtered geophysical timeseries. The proposed method builds on existing methods by explicitly accounting for 
how serial dependence can (a) increase the threshold required for a statistically significant result and (b) 
increase sampling uncertainty. Although the method demonstrates promise for statistical analysis of filtered 
timeseries, more work is needed to verify the conditions under which the proposed method provides added 
benefit over existing methods, and the likelihood of such conditions arising during geophysical timeseries 
statistical analysis.  
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