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Abstract:     The use of auxiliary information has a long history in statistical theory and estimation procedures. 

The utility of supplementary knowledge becomes vital when information about the study variable is limited. 

In this paper, we present a more competent mechanism to utilise auxiliary information in the estimation of the 

finite population mean. We propose a new exponential type of estimator for the estimation of finite population 

mean in the scenario where a simple random sampling scheme is adopted. Our proposed procedure is based on 

the dual use of the supportive information to maximise additional gain and involves the use of the mean of the 

auxiliary variable along with its rank to increase the extent of relevant information. The comparative 

performance of the proposed scheme is demonstrated with respect to 10 most used, classic, and some recent 

procedures in estimation theory literature. These are the classic mean estimator 𝑌̂̅𝑠𝑟𝑠, the so-called traditional 

ratio, product, and regression estimators 𝑌̂̅𝑅, 𝑌̂̅𝑃 and 𝑌̂̅𝑟𝑒𝑔, respectively, along with the difference type estimator 

𝑅.𝐷. In addition, the more recent estimators investigated are the ratio-product exponential type 𝑌̂̅𝑆,𝑅𝑃, difference 

exponential type 𝑌̂̅𝐺𝐾 , ratio exponential 𝑌̂̅𝐵𝑇,𝑅, product exponential 𝑌̂̅𝐵𝑇,𝑃 and the ratio-product-exponential 𝑌̂̅𝑆𝐻𝐺 , 

all used for comparison. Moreover, we consider three data sets of a multi-disciplinary nature, encompassing 

health surveillance, industrial production and poultry. The choice of data sets is mainly motivated by two 

reasons; (i) these data sets have been topics of contemporary techniques and, (ii) the considered data sets do 

offer a wide range of parametric settings, including lower extent of correlation between the study variable with 

the auxiliary variable and they also vary in sample sizes.  

In addition, we consider cases of a higher positive and higher negative degree of linear relationship extant 

between the study variable and auxiliary variable in these data sets. Along with the opportunity of conducting 

a fair comparison of our suggested strategy with contemporary techniques, the above approach allows for us 

to observe various patterns prevalent in the resultant gains of our newly devised scheme. Improvements are 

quantified by the mean square errors of the competing estimators, which are further transformed into relative 

percentage efficiencies to attain a comprehensive view of the research effort. Overall, we observe a noticeable 

amount of decrease in mean square error for our proposed estimator as compared to existing estimators, evident 

for all the considered data sets. However, there are a few observant patterns in the efficiency gains coinciding 

with assigned pre-defined parametric settings, in that the extent of the correlation between the auxiliary variable 

and output variable plays a pivotal role in the performance of estimation procedures. The improvement in the 

efficiency becomes more obvious as the degree of linear relationship between the output variable with the 

auxiliary variable strengthens. For example, minimum gain in percentage relative efficiencies (PREs) is 

observed for the 1st data set, wherein the correlation coefficient, 𝜌𝑜𝑢𝑡,𝑎𝑢𝑥, remains minimal. For the two other

data sets the gain remains clearer as the correlation coefficient takes higher values, say,  |𝜌𝑜𝑢𝑡,𝑎𝑢𝑥| > 0.85. We 
also note the varying performance hierarchy among contemporary estimators with respect to varying features 

of each population. Our proposed estimator outperforms the existing methods studied here in all cases. The 

mathematical expressions for the bias and mean squared error of the proposed estimator is derived under the 

first order of approximation. The theoretical and empirical studies show that the proposed estimator performs 

uniformly better than the existing estimators in terms of the percentage relative efficiency. We advocate that 

in future exponential smoothing will be used to quantify changes given updates by auxiliary information and 

recent observations.  
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1. INTRODUCTION 

1.1 Motivation 

The use of auxiliary information to enhance the performance of estimation procedures is well documented in 

the statistical and allied sciences literature, see for example, Zhang and Chambers (2004), Chou et al. (2017) 

and Bai et al. (2021). In practice auxiliary information is obtainable from various sources, such as census, 

survey reports and expert opinion, see also Rao et al. (1990) and Biemer and Peytchev (2013). It is customary 

to incorporate supportive information as correlates of study variable(s) in estimation procedures, see Kreuter 

et al. (2010). Many researchers have understood the utility of supplementary information in multi-disciplinary 

investigations. For example, early on Haberman (1984), documented the efficacy of such additional 

information to improve the projections of probability measures. Further, Holt and Elliot (1991) advocated the 

use of auxiliary information as a damage control tool in survey-based research to minimize the distortion caused 

by non-responses. Olson (2013) demonstrated the value of supportive information in the estimation of 

distribution functions that can suffer from lost non-ignorable missing data. Recently, Haq et al. (2020) argued 

for the value-add of auxiliary information in the early detection of process shift in industrial engineering.  

Indeed, information retrieved via auxiliary variables has resulted in a wide-ranging gain in performance over 

estimators which do not employ such information. When the auxiliary variable X is available in advance or 

observed readily, and a high correlation exists with the study variable Y, use of auxiliary information is shown 

to be effective for estimating the population mean. In these situations, ratio, regression, and product estimators 

are suggested; note that estimation via regression is traditional and well known. Cochran (1940) proposed the 

ratio method in the case when there is strong positive correlation between Y and X. Later Murthy (1964) re-

evaluated the product method of estimation suggesting it appropriate if a strong negative correlation exists 

between auxiliary and study variables. Srivastava (1971) recommended general ratio estimator using a single 

auxiliary variable. Bhal and Tuteja l (1991) proposed an exponential product estimator for the scenario when 

study and auxiliary variable are negatively correlated and proposed a simple exponential ratio estimator, in the 

case when a positive correlation exists between Y and X. There are some similarities between the procedures 

in this paper and Hussain et al. 2020, however the target Hussain et al., (2020) is estimation of population 

distribution function. This paper primarily focuses on the development of a new estimation procedure capable 

of more competent incorporation of supplementary information in estimating the finite population mean. We 

propose an exponential type of estimator of the mean when random sampling is conducted. Our approach 

involves the dual use of an auxiliary variable by accommodating not only the mean of the variable but ranks 

of the auxiliary variable. The applicability of the proposed scheme is explored by studying three leading data 

sets from the existing literature on estimation procedures. The comparative performance of the newly suggested 

estimator is also evaluated with respect to ten most used existing measures. We consider various parametric 

settings for this purpose. The gains of our proposed use of auxiliary information are documented.  In sub-

section 1.2 and 1.3, we present the mathematical preliminaries frequently used in this research along with a 

brief introduction of contemporary methods to assess their comparative competency, respectively. This paper 

is divided into three major sections. In section 2, we document the mathematical foundations and developments 

of our proposed estimator, wherein the expressions for the bias and mean squared error of the proposed 

estimator are derived under the first order of approximation.  Section 3 reports the main findings of the 

comparative investigations. Section 4 summarises major outcomes of the research and future research.  

1.2 Preliminaries 

Let 𝑍 = {𝑍1, 𝑍2, … , 𝑍𝑁} be a finite population of size 𝑁, where 𝑛 represents the size of a sample drawn from 

the population using simple random sampling without replacement. Let (𝑌, 𝐹) be the measurable space with 𝑃 

the set of all probability measures on (𝑌, 𝐹). Then 𝑌𝑖 represents study variable for 𝑖′𝑡ℎ population unit, where 

𝑖 = 1,2, … , 𝑁 indicating identically and independently distributed vector of random variables. Also, 𝑋𝑖 denotes 

auxiliary variable from the 𝑖′𝑡ℎ data source along with 𝑅𝑖 the ranks of the auxiliary variable. The key 

assumption on the auxiliary variable is the existence of a shared parameter with the study variable. Then for 

we denote  𝑌̅ =
∑ 𝑌𝑖

𝑁
𝑖=1

𝑁
 as the population mean of the study variable along with 𝑦̅ =

∑ 𝑦𝑖
𝑛
𝑖=1

𝑛
 as sample mean. 

Similarly, 𝑋̅ =
∑ 𝑋𝑖

𝑁
𝑖=1

𝑁
 is the population mean of the auxiliary variable, whereas 𝑥̅ =

∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
 represents the sample 

mean. Moreover, 𝑅̅𝑥 =
∑ 𝑅𝑥𝑖

𝑁
𝑖=1

𝑁
 denotes the average rank of the auxiliary with 𝑟̅𝑥 =

∑ 𝑟𝑥𝑖
𝑛
𝑖=1

𝑛
 as its sample 

counterpart. The population variances of study variable, auxiliary variable and related ranks are given as, 𝑆𝑦
2 =

∑ (𝑌𝑖−𝑌̅)2𝑁
𝑖=1

𝑁−1
, 𝑆𝑥

2 =
∑ (𝑋𝑖−𝑋̅)2𝑁

𝑖=1

𝑁−1
 and 𝑆𝑟𝑥

2 =
∑ (𝑅𝑥𝑖

−𝑅̅𝑥)
2

𝑁
𝑖=1

𝑁−1
, respectively, with the sample variants such as 𝑠𝑦

2 =
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∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

𝑛−1
, 𝑠𝑥

2 =
∑ (𝑥𝑖−𝑥̅)2𝑛

𝑖=1

𝑛−1
 and 𝑠𝑥𝑟

2 =
∑ (𝑟𝑥𝑖

−𝑟̅𝑥)
2𝑛

𝑖=1

𝑛−1
. Error terms are defined as, 𝑒́0 =

(𝑦̅−𝑌̅)

𝑌̅
, 𝑒́1 =

(𝑥̅−𝑋̅)

𝑋̅
 and 

𝑒́2 =
(𝑟̅𝑥−𝑅̅𝑥)

𝑅̅𝑥
, where we write 𝐸(𝑒́𝑖) = 0 for 𝑖 = 0,1. Furthermore, 𝐸(𝑒́0

2) = 𝜆𝐶𝑦
2
, 𝐸(𝑒́1

2) = 𝜆𝐶𝑥
2
, 𝐸(𝑒́2

2) =

𝜆𝐶𝑟𝑥

2
, 𝐸(𝑒́0𝑒́1) = 𝜆𝐶𝑦𝐶𝑥𝜌𝑦𝑥, 𝐸(𝑒́0𝑒́2) = 𝜆𝐶𝑦𝐶𝑟𝑥

𝜌𝑦𝑟𝑥
 and 𝐸(𝑒́1𝑒́2) = 𝜆𝐶𝑥𝐶𝑟𝑥

𝜌𝑥𝑟𝑥
, where 𝜆 = (

1

𝑛
−

1

𝑁
) is known 

as the finite population correction. Also, 𝐶𝑦, 𝐶𝑥 and 𝐶𝑟𝑥
 represent coefficients of variation such that 𝐶𝑦 =

𝑆𝑦

𝑌̅
, 

𝐶𝑥 =
𝑆𝑥

𝑋̅
 and 𝐶𝑟𝑥

=
𝑆𝑟𝑥

𝑅̅
, respectively. The shared parameter between study variable and auxiliary variable is 

launched through correlation coefficients, such that 𝜌𝑦𝑥 =
𝑆𝑦𝑥

𝑆𝑦𝑆𝑥
, 𝜌𝑦𝑟𝑥

=
𝑆𝑦𝑟𝑥

𝑆𝑦𝑆𝑟𝑥

 and 𝜌𝑥𝑟𝑥
=

𝑆𝑥𝑟𝑥

𝑆𝑥𝑆𝑟𝑥

.      

1.3 Existing Methods 

This sub-section provides a brief introduction of the most used to date existing methods of estimation of the 

finite population mean with respect to which we compare the performance of our newly proposed scheme. 

(i)- Conventional estimator 𝒀̂̅𝒔𝒓𝒔:  

The mean square error (MSE) of conventional unbiased mean per unit estimator is given as; 

𝑀𝑆𝐸(𝑌̂̅𝑠𝑟𝑠) = 𝜆𝑌̅2𝐶𝑦
2
,            (1) 

where, 𝜆 and 𝐶𝑦 are documented above. 

(ii)- Ratio estimator 𝒀̂̅𝑹:  

Cochran (1940) proposed the classic ratio estimator as; 

𝑌̂̅𝑅 = 𝑦̅ (
𝑋̅

𝑥̅
),             (2) 

where the bias is given as, 𝐵𝑖𝑎𝑠(𝑌̂̅𝑅)=𝜆𝑌̅(𝐶𝑥
2 − 𝐶𝑦𝐶𝑥𝜌𝑦𝑥). The resultant MSE can be written as; 

𝑀𝑆𝐸(𝑌̂̅𝑅) = 𝜆𝑌̅2(𝐶𝑦
2 + 𝐶𝑥

2 − 𝐶𝑦𝐶𝑥𝜌𝑦𝑥).          (3) 

The boundary conditions of the ratio estimator are given as 𝜌𝑦𝑥 >
𝐶𝑥

2𝐶𝑦
.  

(iii)- Product estimator 𝒀̂̅𝑷: Murthy (1964) proposed the product estimator as; 

𝑌̂̅𝑃 = 𝑦̅ (
𝑥̅

𝑋̅
),             (4) 

with the associated bias of 𝐵𝑖𝑎𝑠(𝑌̂̅𝑃) = 𝜆𝑌̅(𝐶𝑥
2 − 𝐶𝑦𝐶𝑥𝜌𝑦𝑥). The MSE of the estimator is derived as, 

𝑀𝑆𝐸(𝑌̂̅𝑃) = 𝜆𝑌̅2(𝐶𝑦
2 + 𝐶𝑥

2 − 𝐶𝑦𝐶𝑥𝜌𝑦𝑥).          (5) 

The boundary conditions of the ratio estimator are given as 𝜌𝑦𝑥 < −
𝐶𝑥

2𝐶𝑦
.       

(iv)- Regression estimator 𝒀̂̅𝒓𝒆𝒈: Cochran (1977) provided the famous asymptotically unbiased regression 

estimator such as; 

𝑌̂̅𝑟𝑒𝑔 = 𝑦̅ + 𝑏(𝑋̅ − 𝑥̅),            (6) 

with 𝑏 as traditional slope estimate of regression line. The asymptotic MSE of the estimator is given as, 

𝑀𝑆𝐸(𝑌̂̅𝑟𝑒𝑔) = 𝜆𝑌̅2𝐶𝑦
2(1 − 𝜌𝑦𝑥

2).           (7) 

The boundary conditions are 𝜆𝑌̅2𝜌𝑦𝑥
2𝐶𝑦

2
> 0, 𝜆𝑌̅2(𝐶𝑥 − 𝐶𝑦𝑥𝐶𝑦)

2
> 0 and 𝜆𝑌̅2(𝐶𝑥 + 𝐶𝑦𝑥𝐶𝑦)

2
> 0.  

(v)- Exponential type ratio estimator 𝒀̂̅𝑩𝑻,𝑹: Bahl and Tuteja (1991) offered exponential type version of 

ratio estimator such as; 

𝑌̂̅𝐵𝑇,𝑅 = 𝑦̅𝑒𝑥𝑝 (
𝑋̅−𝑥̅

𝑋̅+𝑥̅
),            (8) 
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where, bias is defined as 𝐵𝑖𝑎𝑠(𝑌̂̅𝐵𝑇,𝑅) =
𝜆𝑌̅

8
(3𝐶𝑥

2 − 4𝐶𝑦𝐶𝑥𝜌𝑦𝑥). The expression of MSE is given as, 

𝑀𝑆𝐸(𝑌̂̅𝐵𝑇,𝑅) =
𝜆𝑌̅2

4
(4𝐶𝑦

2 + 𝐶𝑥
2 − 4𝐶𝑦𝐶𝑥𝜌𝑦𝑥).         (9) 

(vi)- Exponential type product estimator 𝒀̂̅𝑩𝑻,𝑷: Bahl and Tuteja (1991) offered another exponential type 

estimator as an extension of the product estimator. The expression is given as; 

𝑌̂̅𝐵𝑇,𝑃 = 𝑦̅𝑒𝑥𝑝 (
𝑋̅+𝑥̅

𝑋̅−𝑥̅
).          (10) 

The associated bias is 𝐵𝑖𝑎𝑠(𝑌̂̅𝐵𝑇,𝑃) =
𝜆𝑌̅

8
(3𝐶𝑥

2 + 4𝐶𝑦𝐶𝑥𝜌𝑦𝑥). The MSE of the estimator is derived as, 

𝑀𝑆𝐸(𝑌̂̅𝐵𝑇,𝑃) =
𝜆𝑌̅2

4
(4𝐶𝑦

2 + 𝐶𝑥
2 + 4𝐶𝑦𝐶𝑥𝜌𝑦𝑥).       (11) 

(vii)- Difference type estimator 𝒀̂̅𝑹,𝑫: Rao (1991) suggested a difference type estimator as follows; 

𝑌̂̅𝑅,𝐷 = 𝑡1𝑦̅ + 𝑡2(𝑋̅ − 𝑥̅),          (12) 

where, 𝑡1 and 𝑡2 are suitably chosen constants having optimal values such as 𝑡1(𝑜𝑝𝑡) =
1

1+𝜆𝐶𝑦
2(1−𝜌𝑦𝑥

2)
 and 

𝑡2(𝑜𝑝𝑡) =
𝑌̅𝐶𝑦𝜌𝑦𝑥

𝑋̅𝐶𝑥[1+𝜆𝐶𝑦
2(1−𝜌𝑦𝑥

2)]
. The bias of the estimator up to first order is given as 𝐵𝑖𝑎𝑠(𝑌̂̅𝑅,𝐷) = 𝑌̅(𝑡1 − 1). 

The minimum MSE of 𝑌̂̅𝑅,𝐷, up to the first order of approximation, derived as: 

𝑀𝑆𝐸𝑚𝑖𝑛(𝑌̂̅𝑅,𝐷) =
𝜆𝑌̅2𝐶𝑦

2(1−𝜌𝑦𝑥
2)

1+𝜆𝐶𝑦
2(1−𝜌𝑦𝑥

2)
.         (13) 

(viii)- Ratio-product exponential type estimator 𝒀̂̅𝑺,𝑹𝑷: Singh et al. (2008) proposed new estimator as; 

𝑌̂̅𝑆,𝑅𝑃 = 𝑦̅ [𝑡3𝑒𝑥𝑝 (
𝑋̅−𝑥̅

𝑋̅+𝑥̅
) + (1 − 𝑡3)𝑒𝑥𝑝 (

𝑥̅−𝑋̅

𝑥̅+𝑋̅
)],       (14) 

where, 𝑡3 is any arbitrary constant with optimal value of 𝑡3 =
1

2
+

𝐶𝑦𝜌𝑦𝑥

𝐶𝑥
. Also, the bias of the estimator up to 

first order is defined as 𝐵𝑖𝑎𝑠(𝑌̂̅𝑆,𝑅𝑃) =
𝜆𝑌̅𝐶𝑥

2
((1 + 𝑡3)𝐶𝑥 − 𝐶𝑦𝜌𝑦𝑥). The minimal MSE expression is; 

𝑀𝑆𝐸𝑚𝑖𝑛(𝑌̂̅𝑆,𝑅𝑃) = 𝜆𝑌̅2𝐶𝑦
2(1 − 𝜌𝑦𝑥

2).        (15) 

(ix)- Grover and Kaur estimator 𝒀̂̅𝑮𝑲: Grover and Kaur (2011) provided this estimator, 

𝑌̂̅𝐺𝐾 = (𝑡4𝑦̅ + 𝑡5(𝑋̅ − 𝑥̅)) 𝑒𝑥𝑝 (
𝑋̅−𝑥̅

𝑋̅+𝑥̅
),        (16) 

with 𝑡4(𝑜𝑝𝑡) =
−8+𝜆𝐶𝑥

2

8{−1−𝜆𝐶𝑦
2(1−𝜌𝑦𝑥

2)}
 and 𝑡5(𝑜𝑝𝑡) =

𝑌̅[−8𝐶𝑦𝜌𝑦𝑥+𝐶𝑥{4−𝜆𝐶𝑥
2+𝜆𝐶𝑦𝐶𝑥𝜌𝑦𝑥−4𝜆𝐶𝑦

2(1−𝜌𝑦𝑥
2)}]

8𝑋̅𝐶𝑥[−1+𝜆𝐶𝑦
2(1−𝜌𝑦𝑥

2)]
 as optimally 

chosen constants. Further, the bias is given as, 𝐵𝑖𝑎𝑠(𝑌̂̅𝐺𝐾) = 𝑌̅(𝑡4 − 1) +
3

8
𝜆𝑡4𝐶𝑥

2 +
1

2
𝜆𝑡5𝑋̅𝐶𝑥

2 −
1

2
𝜆𝑡4𝑌̅𝐶𝑦𝐶𝑥𝜌𝑦𝑥. The resultant expression of minimum MSE is written as; 

𝑀𝑆𝐸𝑚𝑖𝑛(𝑌̂̅𝐺𝐾) =
𝜆𝑌̅2[𝜆𝐶𝑥

4+16𝐶𝑦
2(1−𝜌𝑦𝑥

2)(4−𝜆𝐶𝑥
2)]

64{−1−𝜆𝐶𝑦
2(1−𝜌𝑦𝑥

2)}
.        (17) 

(x)- Shabbir et al. estimator 𝒀̂̅𝑺𝑯𝑮: Shabbir et al. (2014) suggested another estimator as follows, 

𝑌̂̅𝑆𝐻𝐺 = [
𝑦̅

2
{𝑒𝑥𝑝 (

𝑋̅−𝑥̅

𝑋̅+𝑥̅
) + 𝑒𝑥𝑝 (

𝑥̅−𝑋̅

𝑥̅+𝑋̅
)} + 𝑡6(𝑋̅ − 𝑥̅) + 𝑡7𝑦̅ ] 𝑒𝑥𝑝 (

𝑋̅−𝑥̅

𝑋̅+𝑥̅
).     (18) 

The constants, 𝑡6(𝑜𝑝𝑡) =
𝑌̅[−8𝐶𝑦𝜌𝑦𝑥+𝐶𝑥{2−𝜆𝐶𝑥

2+𝜆𝐶𝑦𝐶𝑥𝜌𝑦𝑥−2𝜆𝐶𝑦
2(1−𝜌𝑦𝑥

2)}]

4𝑋̅𝐶𝑥{−1−𝜆𝐶𝑦
2(1−𝜌𝑦𝑥

2)}
 and 𝑡7(𝑜𝑝𝑡) =

𝜆{𝐶𝑥
2+4𝐶𝑦

2(1−𝜌𝑦𝑥
2)}

4[−1−𝜆𝐶𝑦
2(1−𝜌𝑦𝑥

2)]
, are 

and 𝐵𝑖𝑎𝑠(𝑌̂̅𝑆𝐻𝐺) =
1

8
[8𝑡7𝑌̅ + 𝜆𝐶𝑥

2{4𝑡6𝑋̅ + 𝑌̅(4 + 3𝑡7)} − 4𝜆𝑌̅𝐶𝑦𝐶𝑥𝜌𝑦𝑥(1 + 𝑡7)], the minimum of MSE is;  

𝑀𝑆𝐸𝑚𝑖𝑛(𝑌̂̅𝑆𝐻𝐺) =
𝜆𝑌̅2[𝜆𝐶𝑥

4+8𝐶𝑦
2(1−𝜌𝑦𝑥

2)(2−𝜆𝐶𝑥
2)]

64{−1−𝜆𝐶𝑦
2(1−𝜌𝑦𝑥

2)}
.                      (19)  
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2. SUGGESTED SCHEME

We proceed by proposing a new exponential-type estimator of the finite population mean while employing 

dual use of auxiliary information. The proposed estimator is written in the form as follows, 

𝑌̂̅𝑃𝑟 = [
𝑦̅

2
{𝑒𝑥𝑝 (

𝑋̅−𝑥̅

𝑋̅+𝑥̅
) + 𝑒𝑥𝑝 (

𝑥̅−𝑋̅

𝑥̅+𝑋̅
)} + 𝑡8(𝑋̅ − 𝑥̅) + 𝑡9𝑦̅ + 𝑡10 (

𝑅̅−𝑟̅

𝑅̅
) ] 𝑒𝑥𝑝 (

𝑋̅−𝑥̅

𝑋̅+𝑥̅
),  (20) 

where, 𝑡8, 𝑡9 and 𝑡10 are unknown constants chosen to attain minimal mean square error. Equation (20) when

rewritten in terms of errors obtains, 

𝑌̂̅𝑃𝑟 = {𝑌̅(1 + 𝑡9)(1 + 𝑒0́) − 𝑡8𝑒1́ − 𝑡10𝑒2́ +
1

8
𝑌̅𝑒1́

2} {1 −
1

2
𝑒1́ +

1

8
𝑌̅𝑒1́

2 + ⋯ }.

By keeping errors up to second degree, we attain 

(𝑌̂̅𝑃𝑟 − 𝑌̅) = {𝑡9𝑌̅ + 𝑡9𝑌̅𝑒0́ + 𝑌̅𝑒0́ − 𝑡8𝑒1́ − 𝑡10𝑒2́ −
1

2
𝑌̅𝑒1́ −

1

2
𝑡9𝑌̅𝑒1́ +

1

2
𝑌̅𝑒1́

2 +
3

8
𝑡9𝑌̅𝑒1́

2 +
1

8
𝑡8𝑒1́

2 −
1

2
𝑌̅𝑒0́𝑒1́ −

1

2
𝑡9𝑒0́𝑒1́ +

1

2
𝑡10𝑒1́𝑒2́}

(21) 

The bias of the estimator is calculated by applying expectation to both sides of the above equation (21) as, 

𝐵𝑖𝑎𝑠(𝑌̂̅𝑃𝑟 − 𝑌̅) = {𝑡9𝑌̅ +
1

2
𝜆𝑌̅𝐶𝑥

2 +
3

8
𝑡9𝜆𝑌̅𝐶𝑥

2 +
1

8
𝑡8𝐶𝑥

2 −
1

2
𝜆𝑌̅𝐶𝑦𝐶𝑥𝜌𝑦𝑥 −

1

2
𝑡9𝜆𝐶𝑦𝐶𝑥𝜌𝑦𝑥 +

1

2
𝑡10𝜆𝐶𝑥𝐶𝑟𝜌𝑥𝑟𝑥

}       (22) 

The MSE of the proposed estimator is then found by squaring and taking expectation of equation (21) as, 

MSE(Ŷ̅Pr) = −λY̅2CyCxρyx +
3

2
t9λY̅2Cx

2 + t9
2λY̅2Cx

2 + t8λY̅Cx
2 − 2t9

2λY̅2CyCxρyx + λY̅2Cy
2 +

𝑡9
2𝑌̅2 + 𝑡10𝜆𝑌̅𝐶𝑦𝐶𝑟𝜌𝑦𝑟𝑥

− 3𝑡9𝜆𝑌̅2𝐶𝑦𝐶𝑥𝜌𝑦𝑥 − 2𝑡8𝜆𝑌̅2𝐶𝑦𝐶𝑥𝜌𝑦𝑥 − 2𝑡10𝜆𝑌̅2𝐶𝑦𝐶𝑟𝜌𝑦𝑟𝑥
−

2𝑡9𝑡10𝜆𝑌̅2𝐶𝑦𝐶𝑟𝜌𝑦𝑟𝑥
+

1

4
𝜆𝑌̅2𝐶𝑥

2 + 2𝑡9𝜆𝑌̅2𝐶𝑦
2 + 𝑡8

2𝜆𝐶𝑥
2 + 2𝑡8𝑡9𝜆𝑌̅2𝐶𝑥

2 −

2𝑡8𝑡9𝜆𝑌̅𝐶𝑦𝐶𝑥𝜌𝑦𝑥 + 2𝑡8𝑡10𝜆𝐶𝑥𝐶𝑟𝜌𝑥𝑟𝑥
+ 𝑡9

2𝜆𝑌̅2𝐶𝑦
2 + 𝑡10

2𝜆𝐶𝑟
2 + 2𝑡9𝑡10𝜆𝐶𝑥𝐶𝑟𝜌𝑥𝑟𝑥

.

(23) 

The optimal values of 𝑡8, 𝑡9 and 𝑡10 are obtained by minimising the above expression (23) to give,

𝑡8(𝑜𝑝𝑡) =

𝑌̅[
𝜆𝐶𝑥

3𝜌𝑦𝑥
2−𝜆𝐶𝑦𝐶𝑥

2𝜌𝑦𝑟𝑥𝜌𝑥𝑟𝑥−4𝐶𝑦
2𝐶𝑥𝜌𝑦𝑥𝜌𝑦𝑟𝑥𝜌𝑥𝑟𝑥−𝜆𝐶𝑥

3+𝜆𝐶𝑦𝐶𝑥
2𝜌𝑦𝑥+2𝜆𝐶𝑦

2𝐶𝑥𝜌𝑦𝑥
2+2𝜆𝐶𝑦

2𝐶𝑥𝜌𝑦𝑟𝑥
2+2𝜆𝐶𝑦

2𝐶𝑥𝜌𝑥𝑟𝑥
2

−2𝜆𝐶𝑦
2𝐶𝑥−2𝜆𝐶𝑥𝜌𝑥𝑟𝑥

2+4𝐶𝑦𝜌𝑦𝑟𝑥𝜌𝑥𝑟𝑥+2𝐶𝑥−4𝐶𝑦𝜌𝑦𝑥
]

4𝐶𝑥{−2𝜆𝐶𝑦
2𝜌𝑦𝑥𝜌𝑦𝑟𝑥𝜌𝑥𝑟𝑥+𝜆𝐶𝑦

2𝜌𝑦𝑥
2+𝜆𝐶𝑦

2𝜌𝑦𝑟𝑥
2−𝜆𝐶𝑦

2+𝜌𝑥𝑟𝑥
2−1}

, 

𝑡9(𝑜𝑝𝑡) =
𝜆{𝐶𝑥

2𝜌𝑥𝑟𝑥
2−8𝐶𝑦

2𝜌𝑦𝑥𝜌𝑦𝑟𝑥𝜌𝑥𝑟𝑥−(𝐶𝑥
2+4𝐶𝑦

2𝜌𝑦𝑥
2+4𝐶𝑦

2𝜌𝑦𝑟𝑥
2+4𝐶𝑦

2𝜌𝑥𝑟𝑥
2−4𝐶𝑦

2)}

4{−2𝜆𝐶𝑦
2𝜌𝑦𝑥𝜌𝑦𝑟𝑥𝜌𝑥𝑟𝑥+𝜆𝐶𝑦

2𝜌𝑦𝑥
2+𝜆𝐶𝑦

2𝜌𝑦𝑟𝑥
2−𝜆𝐶𝑦

2+𝜌𝑥𝑟𝑥
2−1}

, and 

𝑡10(𝑜𝑝𝑡) =
𝑌̅𝐶𝑦{𝜌𝑦𝑥𝜌𝑥𝑟𝑥−𝜆𝐶𝑥

2𝜌𝑦𝑟𝑥−4𝜌𝑦𝑥𝜌𝑥𝑟𝑥+4𝜌𝑦𝑟𝑥}

4{−2𝜆𝐶𝑦
2𝜌𝑦𝑥𝜌𝑦𝑟𝑥𝜌𝑥𝑟𝑥+𝜆𝐶𝑦

2𝜌𝑦𝑥
2+𝜆𝐶𝑦

2𝜌𝑦𝑟𝑥
2−𝜆𝐶𝑦

2+𝜌𝑥𝑟𝑥
2−1}

.

The minimum MSE is thus derived by reusing optimal values of 𝑡′𝑠 such as, 

𝑀𝑆𝐸𝑚𝑖𝑛(𝑌̂̅𝑃𝑟) =
𝜆𝑌̅2{16𝐶𝑦

2(1−𝜌𝑦𝑥𝑟𝑥
2)−𝜆𝐶𝑥

4−8𝐶𝑦
2𝐶𝑥

2(1−𝜌𝑦𝑥𝑟𝑥
2)}

64{1+𝜆𝐶𝑦
2(1−𝜌𝑦𝑥𝑟𝑥

2)}
,  (24) 

where, 𝜌𝑦𝑥𝑟𝑥
2 =

𝜌𝑦𝑥
2+𝜌𝑦𝑟𝑥

2−2𝜌𝑦𝑥𝜌𝑦𝑟𝑥𝜌𝑥𝑟𝑥

(1−𝜌𝑥𝑟𝑥
2)

. 

Below we delineate the mathematical foundations to demonstrate the efficiency of the proposed estimator as 

compared to the existing methods.  These are given in Table 1. 

Table 1. The efficiency expressions relative to the existing methods (i) – (x) 

(i) 𝒀̂̅𝒔𝒓𝒔
64𝐶𝑦

2{1 + 𝜆𝐶𝑦
2(1 − 𝜌𝑦𝑥𝑟𝑥

2)} − {16𝐶𝑦
2(1 − 𝜌𝑦𝑥𝑟𝑥

2) − 𝜆𝐶𝑥
4 − 8𝐶𝑦

2𝐶𝑥
2(1 − 𝜌𝑦𝑥𝑟𝑥

2)} > 0 

(ii) 𝒀̂̅𝑹
64{1 + 𝜆𝐶𝑦

2(1 − 𝜌𝑦𝑥𝑟𝑥

2)}(𝐶𝑦
2 + 𝐶𝑥

2 − 𝐶𝑦𝐶𝑥𝜌𝑦𝑥) − {16𝐶𝑦
2(1 − 𝜌𝑦𝑥𝑟𝑥

2) − 𝜆𝐶𝑥
4 − 8𝐶𝑦

2𝐶𝑥
2(1 − 𝜌𝑦𝑥𝑟𝑥

2)} > 0 

(iii) 𝒀̂̅𝑷
64{1 + 𝜆𝐶𝑦

2(1 − 𝜌𝑦𝑥𝑟𝑥

2)}(𝐶𝑦
2 + 𝐶𝑥

2 + 𝐶𝑦𝐶𝑥𝜌𝑦𝑥) − {16𝐶𝑦
2(1 − 𝜌𝑦𝑥𝑟𝑥

2) − 𝜆𝐶𝑥
4 − 8𝐶𝑦

2𝐶𝑥
2(1 − 𝜌𝑦𝑥𝑟𝑥

2)} > 0 

(iv) 𝒀̂̅𝒓𝒆𝒈
64{1 + 𝜆𝐶𝑦

2(1 − 𝜌𝑦𝑥𝑟𝑥

2)} 𝐶𝑦

2
(1 − 𝜌𝑦𝑥

2) − {16𝐶𝑦
2(1 − 𝜌𝑦𝑥𝑟𝑥

2) − 𝜆𝐶𝑥
4 − 8𝐶𝑦

2𝐶𝑥
2(1 − 𝜌𝑦𝑥𝑟𝑥

2)} > 0 
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(v) 𝒀̂̅𝑩𝑻,𝑹
16{1 + 𝜆𝐶𝑦

2(1 − 𝜌𝑦𝑥𝑟𝑥

2)}(4𝐶𝑦
2 + 𝐶𝑥

2 − 4𝐶𝑦𝐶𝑥𝜌𝑦𝑥) − {16𝐶𝑦
2(1 − 𝜌𝑦𝑥𝑟𝑥

2) − 𝜆𝐶𝑥
4 − 8𝐶𝑦

2𝐶𝑥
2(1 − 𝜌𝑦𝑥𝑟𝑥

2)} > 0 

(vi) 𝒀̂̅𝑩𝑻,𝑷
16{1 + 𝜆𝐶𝑦

2(1 − 𝜌𝑦𝑥𝑟𝑥

2)}(4𝐶𝑦
2 + 𝐶𝑥

2 + 4𝐶𝑦𝐶𝑥𝜌𝑦𝑥) − {16𝐶𝑦
2(1 − 𝜌𝑦𝑥𝑟𝑥

2) − 𝜆𝐶𝑥
4 − 8𝐶𝑦

2𝐶𝑥
2(1 − 𝜌𝑦𝑥𝑟𝑥

2)} > 0 

(vii) 𝒀̂̅𝑹,𝑫
64{1 + 𝜆𝐶𝑦

2(1 − 𝜌𝑦𝑥𝑟𝑥

2)}𝐶𝑦
2(1 − 𝜌𝑦𝑥

2)    − (1 + 𝜆𝐶𝑦
2(1 − 𝜌𝑦𝑥

2)) {16𝐶𝑦
2(1 − 𝜌𝑦𝑥𝑟𝑥

2) − 𝜆𝐶𝑥
4 − 8𝐶𝑦

2𝐶𝑥
2(1 −

𝜌𝑦𝑥𝑟𝑥

2)} > 0 

(viii) 𝒀̅̂ 𝑺,𝑹𝑷 64{1 + 𝜆𝐶𝑦
2(1 − 𝜌𝑦𝑥𝑟𝑥

2)} 𝐶𝑦

2
(1 − 𝜌𝑦𝑥

2) − {16𝐶𝑦
2(1 − 𝜌𝑦𝑥𝑟𝑥

2) − 𝜆𝐶𝑥
4 − 8𝐶𝑦

2𝐶𝑥
2(1 − 𝜌𝑦𝑥𝑟𝑥

2)} > 0 

(ix) 𝒀̅̂ 𝑮𝑲 {1 + 𝜆𝐶𝑦
2(1 − 𝜌𝑦𝑥𝑟𝑥

2)}[𝜆𝐶𝑥
4 + 16𝐶𝑦

2(1 − 𝜌𝑦𝑥
2)(4 − 𝜆𝐶𝑥

2)] − {−1 − 𝜆𝐶𝑦
2(1 − 𝜌𝑦𝑥

2)}{16𝐶𝑦
2(1 − 𝜌𝑦𝑥𝑟𝑥

2) −

𝜆𝐶𝑥
4 − 8𝐶𝑦

2𝐶𝑥
2(1 − 𝜌𝑦𝑥𝑟𝑥

2)} > 0 

(x) 𝒀̂̅𝑺𝑯𝑮
{1 + 𝜆𝐶𝑦

2(1 − 𝜌𝑦𝑥𝑟𝑥

2)}[𝜆𝐶𝑥
4 + 8𝐶𝑦

2(1 − 𝜌𝑦𝑥
2)(2 − 𝜆𝐶𝑥

2)] − {−1 − 𝜆𝐶𝑦
2(1 − 𝜌𝑦𝑥

2)}{16𝐶𝑦
2(1 − 𝜌𝑦𝑥𝑟𝑥

2) −

𝜆𝐶𝑥
4 − 8𝐶𝑦

2𝐶𝑥
2(1 − 𝜌𝑦𝑥𝑟𝑥

2)} > 0 

The above results in Table 1 involve demonstrating that for each earlier existing method (i) – (x), that 

𝑀𝑆𝐸𝑚𝑖𝑛(𝑌̂̅𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔) − 𝑀𝑆𝐸𝑚𝑖𝑛(𝑌̂̅𝑃𝑟) > 0, which is verifiable via using the relevant expressions of optimal

MSE’s while comparing with the optimal MSE of our proposed estimator 

3. DATA AND RESULTS

This section documents empirical evaluations of the comparative performance of the proposed estimator with 

respect to the afore-mentioned existing techniques. Summaries of three data sets along with their sources are:  

Data 1, source Gujarati (2009): Study variable, 𝑌, the eggs produced (millions) in 1990. Auxiliary 

variable, 𝑋, the price per dozen (cents) in 1991. 𝑁 = 50, 𝑛 = 5, 𝑌̅ = 1357.62, 𝑋̅ = 78.29, 𝑅̅𝑥 = 25.50, 𝐶𝑦 =

1.2236, 𝐶𝑥 = 0.2923, 𝐶𝑟𝑥
= 0.5716, 𝜌𝑦𝑥 = −0.3022, 𝜌𝑦𝑟 = −0.2662 and 𝜌𝑥𝑟𝑥

= 0.9574.

Data 2, source Gujarati (2009): Study variable, 𝑌, sleep (minutes) of people age over 50. Auxiliary 

variable, 𝑋, corresponding age (years). 𝑁 = 30, 𝑛 = 5, 𝑌̅ = 384.2, 𝑋̅ = 67.27, 𝑅̅𝑥 = 15.50, 𝐶𝑦 = 0.1558,

𝐶𝑥 = 0.1373, 𝐶𝑟𝑥
= 0.5674, 𝜌𝑦𝑥 = −0.8552, 𝜌𝑦𝑟 = −0.8394 and 𝜌𝑥𝑟𝑥

= 0.9889.

Data 3, source Murthy (1967): Study variable, 𝑌, factory output. Auxiliary variable, 𝑋, number of 

𝑌̅ = 5182.64, 𝑋̅ 𝑅̅

𝑌

workers. 𝑁 = 80, 𝑛 = 10,  = 285.13, 𝑥 = 40.50, 𝐶𝑦 = 0.3542, 𝐶𝑥 = 0.9485, 𝐶𝑟𝑥 =

0.5738, 𝜌𝑦𝑥 = 0.9150, 𝜌𝑦𝑟 = 0.9836 and 𝜌𝑥𝑟𝑥 = 0.8902.

The above data sets include various parametric settings primarily incorporating varying strengths of shared 

reports the comparative performance of rival estimators using 𝑌̂̅𝑆𝑅𝑆 as a base technique in the calculation of 

percentage relative efficiencies (PRE) using optimal MSE values, that is 𝑃𝑅𝐸 = 𝑀𝑆𝐸( ̂̅ 𝑂𝑡ℎ𝑒𝑟) 
× 100.

𝑀𝑆𝐸(𝑌̅̂𝑆𝑅𝑆)

As seen in Table 2, gains of our exponential-type estimator are significant. The efficiency of the devised 

estimator becomes more pronounced as the degree of correlation between the study and auxiliary variable 

increases, consistent with traditional theory regarding use of auxiliary information. Table 2 also presents the 

underlying performance ordering of the estimators under study.  

Table 2. Percentage relative efficiency (PRE) and Performance ordering versus Data sets 1,2 and 3. 
Data Estimators 

𝑌̂̅𝑠𝑟𝑠 𝑌̂̅𝑅 𝑌̂̅𝑃  𝑌̂̅𝑟𝑒𝑔  𝑌̂̅𝐵𝑇,𝑅 𝑌̂̅𝐵𝑇,𝑃  𝑌̂̅𝑅.𝐷 𝑌̂̅𝑆𝑅,𝑃  𝑌̂̅𝐺𝐾  𝑌̂̅𝑆𝐻𝐺  𝑌̂̅𝑃𝑟  

1 1000 83.22 109.56 110.05 92.04 106.14 137.01 110.05 137.53 138.07 552.29 

2 100 30.45 371.43 372.35 51.34 372.35 226.97 372.75 373.10 373.55 1494.22 

3 100 300.57 7.65 614.21 291.95 19.07 615.31 614.21 664.37 827.06 3308.25 

Performance hierarchy of estimators with respect to each data set: Performance ordering 

1 𝑌̂̅𝑃𝑟 > 𝑌̂̅𝑆𝐻𝐺 > 𝑌̂̅𝐺𝐾 > 𝑌̂̅𝑅.𝐷 > 𝑌̂̅𝑆𝑅,𝑃 = 𝑌̂̅𝑟𝑒𝑔 > 𝑌̂̅𝑃 > 𝑌̂̅𝐵𝑇,𝑃 > 𝑌̂̅𝑠𝑟𝑠 > 𝑌̂̅𝐵𝑇,𝑅 > 𝑌̂̅𝑅

2 𝑌̂̅𝑃𝑟 > 𝑌̂̅𝑆𝐻𝐺 > 𝑌̂̅𝐺𝐾 > 𝑌̂̅𝑅.𝐷 > 𝑌̂̅𝑆𝑅,𝑃 = 𝑌̂̅𝑟𝑒𝑔 > 𝑌̂̅𝑃 > 𝑌̂̅𝐵𝑇,𝑃 > 𝑌̂̅𝑠𝑟𝑠 > 𝑌̂̅𝑅 > 𝑌̂̅𝐵𝑇,𝑅

3 𝑌̂̅𝑃𝑟 > 𝑌̂̅𝑆𝐻𝐺 > 𝑌̂̅𝐺𝐾 > 𝑌̂̅𝑅.𝐷 > 𝑌̂̅𝑆𝑅,𝑃 = 𝑌̂̅𝑟𝑒𝑔 > 𝑌̂̅𝑅 > 𝑌̂̅𝐵𝑇,𝑅 > 𝑌̂̅𝑠𝑟𝑠 > 𝑌̂̅𝐵𝑇,𝑃 > 𝑌̂̅𝑃
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4. CONCLUSION

Our proposed procedure outperforms the contemporary techniques with respect to all considered parametric 

settings. Improved performance of the newly suggested estimator is attributed to its ability to incorporate 

auxiliary information more rigorously, whereas the performance ordering of other methods depends on varying 

parametric settings. As expected, 𝑌̂̅𝑠𝑟𝑠 outperforms the ratio estimator and its variant when there is negative 

correlation between the study and auxiliary variable. Similarly, minimal performance is attributed with 𝑌̂̅𝑃 and 

its variant, in the case of a positive linear relationship between study and auxiliary variable, see Cochran (1977). 

The performance of the regression estimator always equates to that of the 𝑌̂̅𝑆𝑅,𝑃, as shown mathematically by 

Singh et al. (2008). In future, we aim to extend the proposed scheme for other sampling schemes, such as 

stratified random sampling and two-phase systematic sampling. The applicability of the suggested estimator in 

situations when group structure is prevalent in the population, and its generalization to multi-auxiliary 

variables, or where significant missingness exists remain issues for future works.  
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