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Abstract: Mapping surface water extent is an important step in estimating water volume within a catchment, 
which is needed for managing flood events, as well as water supply for human consumption, agriculture, and 
the environment. Satellite-based remote sensing technologies provide an affordable means of capturing surface 
water extent with reasonable spatial and temporal coverage suited to the purpose of water monitoring. A new 
multi-index method (MIM) has been developed for mapping surface water across the Murray-Darling Basin 
(MDB) based on Landsat surface reflectance data available in Digital Earth Australia. More than thirty years 
of two-monthly images of surface water extent across the whole MDB have been produced using this method, 
along with Water Observations from Space (WOfS) to fill in any gaps associated with cloud cover due to the 
different cloud masks used (this combined product is referred to as MIM_WOfS_max). This product is 
currently being combined with a DEM to produce estimates of water depth across the basin and can be used 
with hydrology models for assessing connectivity between waterbodies. This product can also be used to assess 
long-term trends of surface water extent across the basin, as well as used for seasonal or bi-monthly analysis.  

The methods used to produce the two-monthly WOfS and MIM products across the MDB are different and 
were based on utilizing the available cloud masks attached to the native products, and computational efficiency 
for generating the products. A comparison of the MIM and WOfS method shows that MIM identifies major 
perennial rivers and wetlands better than WOfS, as well as in some of the floodplain areas, while WOfS can 
identify more surface water in general areas where cloud cover still exists in the MIM product. A small mis-
registration (up to 30 metres in some areas) between the MIM and WOfS products was also found – possibly 
due to the different native spatial projections of the datasets.  

The MIM_WOfS_max product is used for identifying long-term and seasonal trends across the MDB. Over 
the 33-year time period (1988 to 2020) a reduction in surface water extent of 0.15% was found for the whole 
basin. The long-term trends of four sites were also investigated: two irrigated regions and two wetlands. They 
also showed a long-term reduction in surface water extent. The southern sites (one irrigated agriculture and 
one wetland) had regular annual flooding which gradually reduces in size through time, while the northern sites 
showed irregular flood patterns – with respect to the flood’s timing and magnitude. 

Details of the method used and challenges associated with producing the bi-monthly images of surface water 
across the MDB are provided in the paper, as well as further discussions on some of the long-term and seasonal 
trends that can be derived from this product for the entire MDB and selected regions within. 
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1. INTRODUCTION

Mapping surface water extent is an important step in estimating water volume, and monitoring these changes 
is necessary for managing water supply for human consumption, agricultural use, as well as maintaining the 
environmental health of wetlands and rivers. A growing population and changing climate are leading to 
increased pressure on water supply, meaning accurate information on available water is vital. This is 
particularly so in much of Australia, which is becoming hotter and dryer in recent times (Commonwealth of 
Australia 2021a). Furthermore, with flood frequency likely to increase as a result of environmental changes 
(Karamouz et al. 2011; Bhuiyan and Dutta 2012; Teng et al. 2012), there is a growing demand for accurate 
flood maps for disaster risk management. 

Ground observations of surface water extent can provide valuable information, but are not always available. It 
is also difficult to obtain large scale synopsis of current and historical water extent through gauging stations 
and high water marks. Remote sensing technologies provide an affordable means of capturing surface water 
extent with reasonable spatial and temporal coverage suited to the purpose of water monitoring. The spatial 
resolution of the Landsat satellite series (30m) makes it suitable for capturing much of the fine spatial detail of 
a large river basin (e.g. Pekel et al. 2016), at a temporal scale of 16 days (subject to cloud cover). It also has a 
rich archive of data dating back to 1987 for the thematic mapper series.  

The Water Observations from Space dataset is generated by Geoscience Australia and available through Digital 
Earth Australia (Mueller et al. 2016). WOfS uses a decision tree approach based on a selection of Landsat 
spectral bands and indices, as well as ancillary products (including topography and hydrology layers) to 
constrain water extent to likely areas. Individual WOfS images of surface water extent, along with summary 
statistics (from 1980’s to present) are available for Australia for the whole Landsat archive. The WOfS data 
was designed to provide a conservative estimate of surface water extent, making it a robust product, but it is 
more likely to underestimate, rather than overestimate water extent (Sims et al. 2016). However, its cloud-
masking layer works well, with very low commission errors. 

A multi-index method (MIM) was developed for mapping surface water extent within the Murray–Darling 
Basin (Ticehurst et al. in review). It is based on existing indices: modified Normalised Difference Water Index 
(mNDWI; Xu 2006), Fisher’s water index (FWI; Fisher et al. 2016), and the Tasseled Cap Wetness Index 
(TCW; Dunn et al. 2019) already used for mapping surface water extent, where each index is applied in the 
area where it performs at its best. The resulting rule-set uses the NDWI>–0.3 to map water in major perennial 
rivers, TCW>–0.035 to map water in wetlands, and the maximum of NDWI>0 and FWI>0.63 for mapping 
water in the remaining areas. Based on 440 validation plots in the Murray–Darling Basin, this resulted in an 
overall balanced accuracy of 92.7%. 

2. STUDY SITE

The MDB is located in south-eastern Australia (Figure 1). 
It covers an area more than one million square kilometres, 
with 40,000 kilometres of major rivers (Commonwealth 
of Australia 2021b). The MDB contains over 30,000 
wetlands, with 16 of those being internationally 
significant. It also produces around 40% of Australia’s 
agricultural produce (MDBA 2021). The northern section 
of the MDB consists of mostly unregulated ephemeral 
rivers and streams, while the southern section contains 
mostly regulated rivers with major water storages in 
many of them (Commonwealth of Australia 2021b).  

3. DATA AND METHOD

Landsat data from 1988 to 2020 were extracted and 
processed using Digital Earth Australia (DEA; Dhu et al. 
2017, Australian Government 2021) as analysis-ready 
Landsat surface reflectance. The MDB covers 62 
individual Landsat path/row scenes. WOfS water maps 
were also available through Digital Earth Australia. 

Figure 1. Location of the Murray-Darling Basin 
within Australia. Blue lines show perennial 

rivers overlaid on Landsat 8 geo-median image 
from Digital Earth Australia. 
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Processing was performed on the Australian National Computational Infrastructure (NCI Australia 2021) using 
Virtual Desktop Infrastructure (VDI), tested using jupyter notebooks, and batch-processed as python scripts. 

The method for extracting data within DEA was different for Landsat surface reflectance and WOfS. This was 
due to the different way that Landsat surface reflectance and WOfS have cloud masking applied. Landsat 
surface reflectance uses the standard Fmask layer (Zhu and Woodcock 2012), while WOfS uses Fmask as well 
as the automatic cloud cover assessment method (Irish 2000) to further reduce the chance of remnant cloud or 
cloud shadow in the imagery. 

For WOfS, images within a degree tile (latitude and longitude) covering the MDB for every two months were 
extracted, and the maximum water extent maps produced. The MIM water images require six Landsat bands: 
blue, green, red, near-infrared and the two shortwave infrared bands. These Landsat images were extracted 
using DEA’s load_ard function (Geoscience Australia 2021) as third-of-a-degree tiles (which will now be 
called a sub-tile). This function is an efficient way of reading Landsat data as it extracts from all relevant 
sensors (Landsat Thematic Mapper (5), Enhanced Thematic Mapper (7) and Operational Land Imager (8)) 
within the specified time period. Each sub-tile was chosen to be one third of a degree extent in latitude and 
longitude as it reduced the computing memory requirements (since six bands are required for producing the 
multi-index method water map), making it fast, and to help reduce remnant cloud cover/shadow being included. 
This is because cloud shadow can have a very similar spectral response to water, resulting in incorrect estimates 
of maximum water extent within the sub-tile. The load_ard function has an option of specifying the maximum 
percentage of cloud cover (based on Fmask) allowed to be extracted from images within the defined extent. A 
threshold of 20% cloud cover was chosen, so only images that are at least 80% cloud free within the sub-tile 
were used in creating maximum surface water extent. Hence, the load_ard function works better on smaller 
tiles when this cloud cover threshold is utilised. All tiles were then merged for every two months for both the 
WOfS and MIM products. 

All of the MIM two-monthly water images were visually inspected for any remaining artefacts, with cloud 
cover/shadow being the main culprit, which were manually masked from that image. However, some small 
artefacts remain as they were not visible when looking at the image at a regional scale – and inspecting all 
areas in all images in detail was not feasible. Snow was also being identified as surface water, so a snow zone 
mask was created for the alpine region and applied to the two-monthly images for the colder months (i.e. May-
June, July-August, September-October). Three large lakes exist within the snow zone, which were not included 
in the snow mask. Instead, they were inspected to make sure they appeared to be free of snow and only manually 
masked if needed. 

To minimise null values and maximise surface water extent for every two months, the maximum water extent 
was calculated from the MIM and WOfS products. Pixels of null values (which were due to cloud masks or no 
data) were replaced with the other data product. The 33 years of this new two-monthly product (called the 
MIM_WOfS_max) were combined to create an image of the percentage of time (i.e. based on each two-
monthly period) that a pixel is wet. An equivalent product was also generated from the two-monthly MIM 
images and the two-monthly WOfS images, and compared between them. 

The MIM_WOfS_max product is then used to explore long-term and seasonal trends across the basin as well 
as two irrigated agriculture sites (the Coleambally Irrigation Area and lower Balonne floodplain) and two 
wetland sites (Barmah forest and Macquarie Marshes) (See Figure 2a for locations). 

4. RESULTS

The percentage of observations that a pixel has water in it, based on the two-monthly MIM_WOfS_max from 
1988 to 2020, is shown in Figure 2a. This is similar to Geoscience Australia’s WOfS summary layer (Mueller 
et al. 2016), but with some minor differences due to the rule set used to produce the multi-index method 
product. Figure 2b shows the difference between the percentage of time that a pixel has water in it based on 
the two-monthly MIM and the two-monthly WOfS products. Blue and green colours show where the multi-
index method identifies more water, while red and orange colours show where WOfS does. In general, major 
perennial rivers can show as slightly wider and/or more frequently detected in the MIM product (Figure 2c). 
However, there is also a slight mis-match between the MIM and WOfS two-monthly products in some areas – 
up to one Landsat pixel (~30 m) (see top left corner of Figure 2c). This mis-match occurs even when the 
Landsat surface reflectance and WOfS DEA products are extracted the same way, but may be related to their 
different native projections within the DEA. (The latest Landsat surface reflectance used here is collection 3 in 
Universal Transverse Mercator (UTM) projection, while the WOfS two-monthly product was generated before 
collection 3 was available and is Albers Equal Area projection).  
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The MIM method identifies more water in flooded wetlands compared to WOfS, as can be seen in the Barmah 
Forest (Figure 2d). Both Figure 2c and Figure 2d show areas where MIM identifies more water (light green 
tones) and other areas where WOfS identifies more water (light orange tones) across the general landscape. 
This is most likely due to the different cloud-masking algorithms available within each of the DEA datasets. 
All available WOfS images were used to create maximum water extent, whereas only the Landsat surface 
reflectance with less than 20% cloud cover were extracted within each sub-tile. Despite these issues, the 
MIM_WOfS_max product is useful for combining with a DEM for water volume estimates, as input to 
inundation models, and for investigating trends and spatial patterns of water across the MDB. 

Percentage of water within the MDB for each two-monthly MIM_WOfS_max image was calculated, and those 
images with a low proportion of null values (<5%) shown in Figure 3. There were periods of large flood events 
in 1990, 1998, 2011 and 2016, although the catchments where flooding occured requires inspection of 
individual images. The long-term trend shows a reduction in total surface water across the MDB. Over the 33-
year period, this reduction is approximately 0.15% of the basin extent. 

Figure 2. (a) The percentage of observations that a pixel has water in it, based on the two-
monthly MIM_WOfS_max from 1988 to 2020 for the Murray–Darling Basin. (b) difference 

between MIM and WOfS percentage of observations that a pixel has water in it (based on two-
monthly images) for the Murray–Darling Basin. (c) subset of (b), (d) subset of (b). Coleambally 

Irrigation Area (purple), lower Balonne floodplain (orange), Barmah forest (cyan) and 
Macquarie Marshes (green) are also shown in (a). 

The two-monthly image containing minimum water extent and maximum water extent for each year was 
calculated (Figure 4). Figure 4a shows surface water extent tends to be lowest during the winter months, based 
on the whole MDB. Surface water extent tends to be at a maximum during the months of January-February, 
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and September-October. This water extent not only includes flooding, but also irrigated fields and storage 
tanks. No long-term trends can be seen in either of these plots.  

Figure 3. Percentage of water pixels within the Murray-Darling Basin generated from mostly 
cloud-free two-monthly MIM_WOfS_max product. Long-term trend shown in dashed line. 

Figure 4. Month containing minimum (a) and maximum (b) water extent for each year for the 
Murray–Darling Basin based on the MIM_WOfS_max product. 

The total percentage of water within four sites for the two-monthly MIM_WOfS_max images was calculated, 
and those images with a low proportion of null values (<5%) shown in Figure 5. Two of these areas cover 
irrigated agriculture (Coleambally Irrigation Area and irrigated cotton in the lower Balonne floodplain) and 
two areas cover wetlands (Barmah Forest and Macquarie Marshes) (See Figure 2a for locations). The long-
term trend shows a reduction in water extent for all sites over the 33-year period. It also shows different types 
of flooding occurs in these different sites. Barmah forest shows regular flooding each year in September which 
starts to drop off from 1994. The Coleambally Irrigation Area shows regular flooding each year around 
September-October and November-December which reduces substantially around 2002 dropping away 
completely from 2007 until 2010. The Macquarie Marshes in the northern part of the basin show less regular 
flooding, but with some very large flood events. This pattern is also seen in the other northern site at the lower 
Balonne floodplain. 

5. DISCUSSION AND CONCLUSION

Landsat data provided through a nation-wide data cube such as in Digital Earth Australia, can be used to 
provide multi-temporal images of surface water extent at reasonable spatial and temporal resolution for 
monitoring water dynamics in a large regional catchment such as the MDB. In this paper, Landsat data within 
Digital Earth Australia were used to generate two-monthly images of maximum water extent from 1988 to 
2020. The new MIM was combined with the WOfS dataset to produce a new product providing maximum two-
monthly water extent, while minimizing data gaps due to cloud cover or null data values. The use of MIM 
provides better identification of major rivers and flooded wetlands, while inclusion of the WOfS increases the 
chances of finding more cloud-free observations. While the details are not included in this paper, the multi-
index method has been tested for its ability to identify water within the MDB with an accuracy of 92.7%, which 
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is higher than the individual water indices that it uses (Ticehurst et al. in review). This MIM_WOfS_max 
product can be used to provide summary statistics across the basin, including long-term trends of surface water 
extent for the whole basin, or individual sites within the basin. All sites examined in this paper showed a long-
term reduction in surface water extent. It must be noted that a maximum two-monthly product is not necessarily 
going to give an accurate indication of minimum water extent during dryer periods, as it was designed to 
maximise the chances of capturing flood events by generating maximum extent. Any cloud cover during a 
flood event, which often occurs, will reduce any observation of the actual flood extent. However, these types 
of products provide basis to estimate water depth across the MDB and can be used in conjunction with 
hydrology models to investigate floodplain connectivity and water movement in a complex environment.  

Figure 5. Percentage of water pixels within the areas around Macquarie Marshes, Barmah 
Forest, Lower Balonne floodplain and Coleambally Irrigation Area generated from mostly cloud-

free two-monthly MIM_WOfS_max product. Long-term trend shown in dashed line 
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