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Abstract:   Dealing with uncertainty is becoming increasingly important in model-based decision 
support. Various methods have been developed in order to do this, including uncertainty, sensitivity and 
scenario analysis. Although these different methods serve their purpose, the availability of a large number of 
methods can make it difficult for practitioners to understand the similarities and differences between them 
and when the use of one is more suitable than another, resulting in confusion.  In addition, researchers often 
identify with belonging to a group dealing with a particular approach, which can lead to a lack of cross-
fertilisation and understanding. 

In order to assist with bridging the gap between researchers working on different approaches to dealing with 
uncertainty and eliminate confusion for practitioners, the objective of this paper is to examine the relationship 
between uncertainty, sensitivity and scenario analysis in the context of model-based decision support, and to 
take the first steps towards establishing common ground between these methods and assess the contexts under 
which they are most suitable. 

This is achieved by conceptualising the various methods as different approaches to “sampling” the hyperspace 
of model inputs, although this is done from different perspectives and for different ends (Figure 1). It is 
therefore also necessary to think about the assumptions each method is making about the space being explored, 
and there are benefits to be gained in thinking about how best to sample the space for each purpose. 

The approaches identified in this conference paper provide a first level of coarse characterisations. Further 
refinements in categorisation is possible (with the differentiation between narrative and stress testing scenarios 
as a first example), and likely to be useful. There are connections to be made to other disciplines, such as 
philosophy and decision theory, regarding the assumptions each method makes.  
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Figure 1. Illustration of how uncertainty, sensitivity and scenario analysis represent different ways of 
“sampling” the hyperspace of inputs to system models.  
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1. INTRODUCTION

Dealing with uncertainty is becoming increasingly important in model-based decision support. There are 
many different categorizations of uncertainty (e.g. Walker et al. 2003; Refsgaard 2007; Ascough et al. 2008, 
Kwakkel et al. 2010, Maier et al. 2016), including different levels of uncertainty (e.g. local uncertainty, 
global (deep) uncertainty, distributions, bounds, recognized ignorance, recognized unknowns). In order to 
deal with these different levels of uncertainty, various methods have been developed to enable the above 
uncertainties to be considered when using models for decision support. 

Uncertainty analysis methods can be used to obtain probabiities of different system responses by propagating 
input uncertainty through the model (Matott et al. 2009; Maier et al. 2016). In contrast, sensitivity analysis 
methods determine the relative magnitudes of system responses to changes in inputs, and hence which inputs 
are most significant (Matott et al. 2009), while scenario analysis is used to explore multiple plausible futures 
(Maier et al. 2016), enabling values of plausible system responses to be simulated under these futures (Figure 
1). Although these different methods serve their purpose, the availability of a large number of methods can 
make it difficult for practitioners to understand the similarities and differences between them and when the 
use of one is more suitable than another, resulting in confusion.  In addition, researchers often identify with 
belonging to a group dealing with a particular approach, which can lead to a lack of cross-fertilisation and 
understanding. 

In order to assist with bridging the gap between researchers working on different approaches to dealing with 
uncertainty and eliminate confusion for practitioners, the objective of this paper is to examine the relationship 
between uncertainty, sensitivity and scenario analysis in the context of model-based decision support and to 
take the first steps towards establishing some common ground between these methods and assess the contexts 
under which different methods are most suitable. 

2. RELATIONSHIP BETWEEN UNCERTAINTY, SENSITIVITY AND SCENARIO ANALYSIS

In model-based decision support, the relationship between uncertainties in system drivers of interest and 
corresponding system responses is represented by a system model. Consequently, irrespective of whether 
uncertainty, sensitivity or scenario analysis is used, the only way to quantify the impacts of system uncertainties 
is via the inputs to the system model. The key difference between the way system uncertainty is accounted for 
in these different methods is via different combinations of model input vectors (Figure 1). Therefore, different 
methods for dealing with uncertainty can be thought of as different ways of “sampling” values in the 
hyperspace of potential values the inputs to the system model can take (McPhail et al. 2020).  

As part of uncertainty analysis, values in this hyperspace are sampled so as to adequately describe the 
uncertainty in outputs arising from propagating input uncertainty through the model (Matott et al. 2009). 
Uncertainty in inputs may be in the form of probability distributions or bounds, resulting in uncertainty in 
outputs described in the corresponding form (Guillaume et al. 2012). While at the simplest this involves 
running many model scenarios in a Monte Carlo analysis, more efficient methods are typically available, e.g. 
error propagation methods, importance sampling, response surface models, or carefully selected extreme 
scenarios. 

As part of sensitivity analysis, values in the hyperspace of model inputs are sampled so as to robustly deduce 
the effect of changes made to the model inputs. Going beyond ad hoc comparisons of model scenarios or local 
one at a time (OAT) perturbations, using patterns of perturbations across the hyperspace describes the global 
sensitivity of outputs to the inputs and interactions tested. Importantly, the patterns are dependent on the bounds 
and distribution of inputs used, with sensitivities likely to vary across sub-spaces and importance of inputs 
influenced by how likely they are to occur. While sensitivity analysis is naturally used after or as part of 
uncertainty analysis to attribute output uncertainty to specific combinations of inputs, it can also be used to 
rank or screen inputs before or without uncertainty analysis (Pianosi et al. 2016), in which case the input bounds 
and distribution used are assumed to be sufficiently indicative for the purpose at hand. 

As part of scenario analysis, values in this hyperspace are “sampled” so as to represent coherent future 
pathways based on different sets of assumptions (Maier et al. 2016). Any set of scenarios cannot be assumed 
to fully capture uncertainty about the future, such that it cannot be interpreted as quantifying output uncertainty 
as in the case of an uncertainty analysis. Instead, scenarios derived, for example, from narrative storylines (e.g. 
Mahmoud et al., 2009), typically capture radically different assumptions about processes and conditions that 
seemingly do not easily fit within a single model, and quantitative scenario methods, such as systematic stress 
testing (e.g. Cullet et al., 2016), characterise how system performance varies across the space assuming that 
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input uncertainty can be reliably characterized. “Sampled” is placed in quotes here as a story and simulation 
approach often involves designing a model scenario that fits a qualitative narrative rather than selecting inputs 
of an existing model. More generally, from a philosophical point of view, the scenario can be conceptualised 
as a “possible world” (Menzel 2021), that is then approximated by a sampled point in the hyperspace defined 
by model inputs. 

In principle, it is possible to perform all three of uncertainty analysis, sensitivity analysis and scenario analysis 
using samples that are generated randomly or obtained using techniques such as stakeholder elicitation.  To do 
so, however, simply means that the purpose of sampling was not accounted for in selecting the model inputs 
to be evaluated, and the analyst then has to make the most of what they randomly received or were given. It is 
expected that aligning which samples are drawn with the desired outputs will usually result in better outcomes, 
either in terms of accuracy of the conclusions drawn and / or the computational cost involved in getting there. 
So while the mechanics of sampling the hyperspace of model inputs is the same, irrespective of whether 
uncertainty, sensitivity or scenario analysis is used, the intent behind obtaining and the meaning of the samples, 
can be fundamentally different. 

Even though the above discussion is concerned with uncertainty in system drivers, it should be noted that the 
underlying concepts are more broadly applicable, as different model structures and even optimisation objective 
functions can be considered discrete inputs. Guillaume et al. (2015) similarly refer to “complete model 
scenarios (complete taken to include structure, parameters and inputs for each scenario instance)”. 

3. GUIDANCE FRAMEWORK

3.1. Overview 

The key factors affecting the relative suitability of the different approaches to dealing with uncertainty include 
whether the uncertain system drivers of interest are included as inputs to the system model and what the desired 
outputs are (Figure 2). If all uncertain system drivers of interest are represented as model inputs, the uncertainty 
associated with these drivers can be represented explicity, enabling the impact of the uncertainties associated 
with these drivers on system performance to be quantified using either sensitivity, scenario or uncertainty 
analysis, depending on the desired output.   

Figure 2. Guidance framework for assessing the suitability of uncertainty, sensitivity and scenario analysis 

In contrast, if not all uncertain drivers of interest are represented as inputs to the system model, the uncertainty 
associated with the drivers that do not correspond to a model input is generally not able to be represented 
explictly, as the values of the model inputs have to be calculated based on a series of processes, all of which 
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can be subject to different uncertainties. The choice of which of these processes to represent explicitly in the 
model and which to consider exogenous is affected by a number of factors, including the degree of 
understanding of the different processes, the ability to represent the different processes mathematically, the 
degree of data availability, computational requirements etc. (see Hunter et al., 2018). Consequently, if any of 
the uncertainties of interest are part of processes that are not modelled explicitly, they need to be represented 
as scenarios or explored using local sensitivity analysis (Figure 2). 

Let us consider the management of a reservoir system as an illustrative example, where the influence of various 
system uncertainties on reservoir levels are of interest. In this case, the chain of physical processes could 
correspond to inflow, precipitation, regional and global climate drivers and atmospheric carbon concentrations. 
If we select a system model that represents reservoir operation and only has reservoir inflows as inputs, any 
plausible changes in the processes affecting inflow (e.g. runoff generation, precipitation, regional and global 
climate drivers, atmospheric carbon concentrations) must be represented by scenarios corresponding to 
different plausible changes in inflow (Figure 3a). Note that although the preceding processes are not modelled 
explicitly by the system model, these may have been modelled by someone else previously (e.g. global 
circulation models, etc.), enabling appropriate scenarios representing these processes to be developed. 

Figure 3. Two examples of the chain of processes affecting reservoir water level. (a) is a simpler system 
model incorporating fewer processes to change precipitation into water level, whereas (b) is a much more 
complex system model, which begins with atmospheric carbon concentrations as inputs and then, through 

many modelled processes, reservoir level is determined 
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In contrast, if the selected system model represents inflow, precipitation, and climate change processes 
explicitly (e.g. through coupling a general circulation model, a regional climate model, a hydrological model 
and a reservoir model), only changes in atmospheric carbon concentrations would need to be represented with 
the aid of scenarios (Figure 3b)) (again, noting that some modelling may have been done by others to determine 
the scenarios that best represent plausible changes in atmospheric carbon concentration). This illustrative 
example focuses on processes affecting supply; analogous chains of system processes could be developed to 
depict water demand. 

3.2. Illustrative examples 

Three cases are considered in the context of the reservoir management example mentioned above for the sake 
of illustration (Figure 4). In case 1, there is interest in determining the probability that reservoir levels are too 
high, given uncertainty in precipitation. In case 2, there is interest in assessing the impact of changes in 
precipitation on changes in reservoir levels and in case 3, there is interest in determining the impact of climate 
change on reservoir levels. The first step in determining the suitability of different approaches to dealing with 
uncertainty is to identify the uncertainties and system outcomes of interest (Figure 4). In cases 1 and 2, there 
is interest in examining the relationship between variation in precipitation and reservoir levels, whereas in case 
3, there is interest in examining the relationship between climate change and reservoir levels. 

Figure 4. Illustrative examples for determining most appropriate method for dealing with uncertainties of 
interest. Process elements in purple boxes are modelled explicitly. 

In order to determine which methods for examining these relationships are most appropriate, it needs to be 
determined whether all uncertainties of interest are represented as inputs to the system model (Figure 2). The 
first step in this process is to identify all of the processes that connect the uncertainties and performance of 
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interest.  As can be seen in Figure 4, for cases 1 and 2, the process chain consists of three components, including 
precipitation, inflow and reservoir levels. In contrast, the process chain for case 3 is much longer, consisting 
of atmospheric carbon concentrations, global climate drivers, regional climate drivers, precipitation, inflow 
and reservoir levels (Figure 3). Once the process chains have been articulated, it has to be determined which 
of these elements are modelled explicitly in the system model based on criteria such as model and data 
availability, modeler expertise, computational requirements etc., as discussed above. In the illustrative 
example, it is assumed that the full process chain can be modelled explicitly for cases 1 and 2, as this would 
only require a rainfall-runoff model to be coupled with a reservoir model.  Consequently, all uncertainties of 
interest (i.e. precipitation) are represented explicitly as model inputs, opening the door for sensitivity and 
uncertainty analysis to be used (Figure 2). For case 3, it is assumed that there is insufficient capacity to model 
all elements of the process chain explicitly and that only the relationship between reservoir inflows and levels 
will be modelled explicitly (Figure 4).  

Given that all elements in the process chain are modelled explicitly in cases 1 and 2, the use of uncertainty, 
sensitivity or scenario analysis are options, depending on the desired outcomes (Figure 2). As the objective for 
case 1 is to obtain the probability that reservoir levels are too high, the use of uncertainty analysis is most 
appropriate, provided all uncertainties of interest are able to be represented by probability distributions.  In 
contrast, as the objective in case 2 is to assess the impact of changes in precipitation on changes in reservoir 
levels, the use of sensitivity analysis is likely to be most appropriate. For case 3, scenarios have to be used to 
represent all of the other uncertainties associated with climate change processes, as is common practice when 
assessing the impacts of climate change on water resource systems (e.g. Beh at al., 2015), as not all 
uncertainties are modelled explicitly. 

4. CONCLUSIONS

Conceptualising uncertainty, sensitivity and scenario analysis methods as different approaches to sampling 
hyperspace is useful. It draws attention to the fact that at their core all methods are exploring the same space 
from different perspectives and for different ends. It is necessary to think about the assumptions each method 
is making about the space being explored, and there are benefits to be gained in thinking about how best to 
sample the space for each purpose.  This makes it easier to conceive of these different methods of being part 
of the same toolkit that can be used to obtain different types of information on system responses to uncertainty 
in system drivers of interest. It also enables different approaches to dealing with uncertainty be be thought of 
as being part of a continuum, rather than being distinct approaches.  This opens the door to greater collaboration 
and cross-fertilisation of ideas between researchers from research fields that are generally considered as 
distinct, as well as providing greater clarity to practicioners users of these methods. 

The approaches identified in this conference paper provide only a first level of coarse characterisations. Further 
refinements in categorisation is possible (with the differentiation between narrative and stress testing scenarios 
as a first example), and likely to be useful. There are connections to be made to other disciplines, such as 
philosophy and decision theory, regarding the assumptions each method makes. Attention could also be given 
to selection of samples intended to be used for multiple purposes, how to go about selecting samples for 
computationally expensive models in that context, and the role of optimisation, meta-models and multi-fidelity 
modelling in facilitating efficient exploration of the space. 
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