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Abstract: Sub-seasonal streamflow forecasts are important for a range of water resource management 
applications, with a distinct practical interest in forecasts of high flows (e.g. for managing flood events) and 
low flows (e.g. for managing environmental flows). Despite this interest, differences in forecast performance 
for high and low flow events are not routinely investigated. Our study reveals that while forecasts evaluated 
over the full flow range can appear reliable, stratification into high/low flow ranges highlights significant 
under/over-estimation of forecast uncertainty, respectively.  

This study introduces a flow-dependent (FD) non-parametric component into a post-processing model of 
hydrological forecasting errors, the Multi-Temporal Hydrological Residual Error (MuTHRE) model, yielding 
the MuTHRE-FD model. We use a case study with 11 catchments in the Murray Darling Basin, the GR4J 
rainfall-runoff model and post-processed rainfall forecasts from ACCESS-S, to compare the MuTHRE and 
MuTHRE-FD models. Through its improved treatment of flow-dependence, the MuTHRE-FD model achieves 
practically significant improvements over the original MuTHRE model in the reliability of forecasted 
cumulative volumes for: (i) high flows out to 7 days; (ii) low flows out to 2 days; and (iii) mid flows for 
majority of lead times. Example cumulative flow time series are provided in Figure 1. The new MUTHRE-FD 
model provides sub-seasonal forecasts with high quality performance for both high and low flows over a range 
of lead times. This improvement provides forecast users with increased confidence in using sub-seasonal 
forecasts across a wide range of applications. 

 
Figure 1.  Example time series of predictive limits of cumulative volume forecasts out to 28 days for Hughes 
Creek (catchment ID 405228). Results are shown for forecasts issued on 1 November 2010, which is a high 
flow period (left side), and 1 December 2009, which is a low flow period (right side). 
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1. INTRODUCTION 

Sub-seasonal streamflow forecasts offer valuable information for a range of real-time water resource 
applications. For example, forecasts of high flows can be used for flood storage reservoir operations, while 
forecasts of high and low flows are useful for environmental flow management. In large water resource 
systems, with travel times of days to weeks, forecasts of daily flows and cumulative volumes are required at 
lead times up to the maximum travel time within the system. In this context, seamless forecasts, i.e., forecasts 
obtained using a single method that maintains high quality across a range of time scales, are attractive in both 
research and practical applications.  

Streamflow forecasts are uncertain due to rainfall forecast uncertainty (associated with predicting future 
rainfall) and hydrological uncertainty (associated with model structure errors, initial conditions, etc). 
Hydrological uncertainty is often represented using residual error models. These models should reflect the 
complex statistical characteristics of hydrological errors, including heteroscedasticity (larger errors for larger 
flows), persistence (similar errors for consecutive times), non-Gaussianity (skewness and kurtosis), and other 
temporal variations (e.g. due to seasonality and changing catchment conditions). 

A key question is whether common residual error models are able to provide high quality characterization of 
forecast uncertainty in both high and low flows. Despite most water resource decisions being made based on 
high and low flows, forecast performance for high and low flow events are not routinely investigated.  

The study has the following aims: 

1) Investigate the performance of sub-seasonal streamflow forecasts using a high/low flow stratification; 

2) Improve the reliability of high/low flow forecasts by representing the flow-dependence of innovations. 

The analysis is carried out using the Multi-Temporal Hydrological Residual Error (MuTHRE) model 
(McInerney et al. 2020), which was shown to achieve seamless forecasts with good reliability across a range 
of lead times (1-30 days), stratifications (months and years), and time scales (daily and monthly). 

2. PROBABILISTIC MODEL FOR STREAMFLOW FORECASTING 

The methods in this study employ the ensemble dressing approach to probabilistic streamflow forecasting 
(Pagano et al. 2013). Hydrological uncertainty is characterized using the MuTHRE model (Section 2.1), with 
two different approaches for modelling innovations (Section 2.2). Rainfall uncertainty is represented using 
multiple rainfall forecast replicates (Section 2.3). 

2.1. Summary of MuTHRE model for representing hydrological uncertainty 

The MuTHRE model represents hydrological uncertainty in streamflow tq  (at time step t ) through a 

probability model tQ  (i.e. ~ ttq Q ) which combines a deterministic hydrological prediction det
tq  and a 

residual error term tη  in transformed space, 

  det( ; ) ( ; )t z t z tz Q z q η= +θ θ  (1) 

Here z  represents the Box-Cox transformation (Box and Cox 1964), with power parameter 0.2λ =  
(McInerney et al. 2017).  The deterministic term is  

 det

1 )( ; ,h t ttq h
−

= θ x s   (2) 

where h  is a rainfall-runoff model with parameters hθ , inputs tx  and initial conditions 1t−s .  The residual 
error term follows as AR(1) model 
 1 1( )t t t tt yηη η µ µφ − − += +−   (3) 

where ηφ  is the lag-1 autoregressive parameter, tµ  is the time-varying mean of tη which accounts for 

seasonality and dynamic biases (McInerney et al. 2020), and ty  is the innovation (i.e. random component) at 

time t . We consider two models for ty  in Section 2.2. 
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A conceptual diagram of the MuTHRE model is shown in Figure 2. 

The deterministic model in equation (2) can be used to generate the following streamflow estimates: 

i. “Simulated” streamflow  simq , when h is forced with observed rainfall x  , which is used for calibrating 

the set of parameters { , , }h z η= θ θ θθ  using the observed streamflow time series q . Given estimated 

parameters θ̂  we can compute simulated streamflow simq  and compare against observed streamflow q  
to calculate “empirical innovations” y  using equations (1)-(3). 

ii. An ensemble of “raw” streamflow forecasts, raw( )
foc}{ ; 1, ,f f N=q  , when h is forced using an 

ensemble of focN  forecast rainfall replicates foc( )
foc; 1,..., }{ f f N=x , which is used in forecasting.  

 
Figure 2. Components of MuTHRE model 

2.2. Models of innovations 

Mixed-Gaussian model 
The original MuTHRE model represents innovations using a two-component mixed-Gaussian distribution,   
which was found to improve the reliability of forecasts at short lead times by allowing for excess kurtosis in 
the innovations (Li et al. 2016; McInerney et al. 2020). This innovation model assumes the distribution of 
innovations does not depend on the flow magnitude (see Figure 3a).  

Flow-dependent model 
The flow-dependent (FD) innovation model allows for a dependence (conditioning) of the distribution of 
innovations ty  on the flow magnitude. For a given det

tq , the (conditional) innovation det|t ty q  is sampled non-
parametrically as follows. 

1. Construct the set of time steps Τ in the calibration period with predicted flows “similar” to det
tq ,  

chosen here as times where CDF values of detqT  are within 0.05 of the CDF value of det
tq .  

2. Extract the flow-dependent empirical distribution Ty  

3. det|t ty q  is selected randomly with replacement from Ty . 
The sampling procedure is illustrated in Figure 3b using two examples of Τ for low and high flows. For a 
deterministic prediction det 1

cal (0.15)t Pq −=  (i.e., equal to the bottom 15th percentile of flows from the 
calibration period), the set Τ  (and corresponding innovations) are indicated using blue points. The empirical 
innovations from these time steps make up the flow-dependent empirical distribution for that value of det

tq , as 

given by the blue histogram. Similarly, for det 1
cal 0.9)(t Pq −= , the set Τ  (and corresponding innovations) are 

indicated using red points, and the corresponding flow-dependent empirical distribution is given by the red 
histogram.  

See McInerney et al. (2021) for full equations and justification and discussion on the potential implications of 
the modelling choices listed above. The new residual error model with flow-dependent (FD) innovations is 
referred to as MuTHRE-FD. 
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2.3. Generation of streamflow forecasts accounting for rainfall forecast uncertainty 

Hydrological uncertainty (represented by the MuTHRE/MuTHRE-FD models) is then added to the raw 
streamflow forecasts, ( rawq  in Section 2.1), to produce post-processed streamflow forecasts.  See McInerney 

et al. (2020) for a detailed description of this procedure. Forecasts of cumulative flow volumes at lead time   
are obtained by aggregating the daily forecasts between 0 1t +  and  . 

 
Figure 3. (a) mixed-Gaussian innovation model used in MuTHRE, which uses a single distribution to sample 
innovations when producing streamflow forecast replicates and (b) flow-dependent innovation model used in 

MuTHRE-FD, which samples non-parametrically from different subsets of the empirical distribution of 
innovations, according to the magnitude of predicted flow. 

3. CASE STUDY 

3.1. Hydrological data and model 

We compare forecasts from the MuTHRE and MuTHRE-FD models using a case study with 11 catchments in 
the Murray Darling Basin (McInerney et al. 2020). Daily time series of observed rainfall, PET and streamflow 
over a 22-year period from 1991-2012 are obtained from the Bureau of Meteorology’s Hydrologic Reference 
Stations (HRS) dataset. Rainfall forecasts are taken from the Australian Community Climate Earth-System 
Simulator - Seasonal (ACCESS-S), and post-processed to reduce biases and improve reliability (Schepen et al. 
2018). The GR4J rainfall-runoff model (Perrin, Michel, and Andreassian 2003) is used as the deterministic 
model. A moving-window leave-one-year-out cross-validation procedure is used for calibration and evaluation. 
Forecasts are produced from the first day of each month, and extended out to lead times of one month. 

3.2. Forecast evaluation 

We evaluate performance of cumulative volume forecasts under leave-one-year-out cross-validation in terms 
of reliability and sharpness. Reliability (i.e. the degree of statistical consistency between observations and the 
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forecast distribution) is quantified using the metric of Evin et al. (2014). Sharpness (i.e., uncertainty in the 
forecast distribution) is quantified as a skill score by the average ratio of the 90% limits of the forecast 
distribution and the 90% limits of the climatology (Woldemeskel et al. 2018). Lower metric values indicate 
better performance. Performance metrics for cumulative volumes are computed for each lead time between 1 
and 28 days, and for specific flow volume ranges (high/mid/low/all, based on the median ensemble forecast). 
Volumes in the top 5% are referred to as “high” flows, those in the bottom 50% are “low” flows, and the rest 
are “mid” flows. This stratification is based on the shape of the predicted flow duration curve for the case study 
catchments, which (broadly speaking) is very steep for the top ~5% of flows, and flat for the bottom ~50% of 
flows. Practical significance tests are used to determine whether the MuTHRE-FD model has better or worse 
performance metrics than the MuTHRE model over the range of catchments, and whether these differences are 
of practical relevance (defined as a difference by more than 10% of the median value for MuTHRE model).    
4. RESULTS 

Figure 1 and Figure 4 illustrate how the innovation model impacts on the reliability and prediction limits of 
forecasts in the Hughes Creek catchment. Figure 4a shows PQQ (reliability) plots for high flows at a lead time 
of 1 day. The shape of the PQQ plots indicates that the original MuTHRE model underestimates uncertainty in 
high flows, resulting in poor reliability (large departure from 1:1 line). The new MuTHRE-FD model largely 
resolves this problem and achieves reliable forecasts, with the PQQ plot lying within the 90% uncertainty 
limits. Figure 1a shows cumulative volume forecasts for a specific high flow period, beginning on the 1-Nov-
2010. For short lead times, the MuTHRE model is over-confident, with observed flows outside the 90% 
prediction limits for the first 8 days. In contrast, the wider prediction limits of the MuTHRE-FD model 
encompass all observed values. 

 
Figure 4.  PQQ plots for day-ahead forecasts for Hughes Creek (catchment ID 405228). Results are shown 

for high flows (left side) and low flows (right side). 
 

For low flow periods, the PQQ plots in Figure 4b show that the MuTHRE model overestimates uncertainty for 
day-ahead forecasts, while the MuTHRE-FD model provides more reliable forecasts. Figure 1b shows forecasts 
for a specific low flow period, beginning on 1-Dec-2009. For both models, the observations lie within the 90% 
prediction limits, but the MuTHRE-FD forecasts are sharper, especially for short lead times. 

Figure 5 (top row) show reliability of cumulative volume forecasts from the MuTHRE and MuTHRE-FD 
models out to 28 days over all case study catchments. When all flows are lumped together, forecast reliability 
is similar for both models (Figure 5a). When high flows are considered separately (Figure 5b), the MuTHRE-
FD model provides practically significant improvements in reliability of cumulative volumes for the first 8 
lead times. Largest improvements are for the lead time of 1 day: MuTHRE suffers from poor reliability with 
median metric value of 0.32, while MuTHRE-FD achieves a (median) reliability of 0.17. Importantly, unlike 
the MuTHRE model, the reliability of high-flow forecasts from the MuTHRE-FD model is relatively stable 
across all lead times.  

620



McInerney et al, Improving sub-seasonal streamflow forecasts across flow regimes 

 
Figure 5. Performance metrics for cumulative volume forecasts from the two models, computed using all 

flows (Column 1) and stratified by flow magnitude (Columns 2-4). For a given model, the bars indicate the 
full range of metric values across the catchments, the line indicates the median metric values, and the 

symbols indicate whether MuTHRE-FD forecasts are practically better/worse than the MuTHRE forecasts.  
 

For mid-flows, the MuTHRE-FD model provides practically significant improvements in reliability for all lead 
times greater than 13 days (Figure 5c). For low flows, the MuTHRE-FD model provides practically significant 
improvements for the first 2 lead times (Figure 5). Similar to high-flows, the largest improvements are for the 
lead time of 1 day, where the median reliability metric for low flows improves from 0.12 (MuTHRE) to 0.05 
(MuTHRE-FD). 

Figure 5 (bottom row) shows sharpness of forecasts. MuTHRE-FD offers improvements in sharpness of low 
flows (which make up 50% of days), which are practically significant for the first 8 lead times (Figure 5h). 
This comes at the cost of practically significant worsening of sharpness for high flows (Figure 5f). The loss of 
sharpness in high-flow forecasts of the MuTHRE-FD model occurs due to forecasts no longer being over-
confident, which was a problem for the MuTHRE model where uncertainty in high flows was under-estimated. 

We note that MuTHRE-FD model also produces improvements in terms of volumetric bias and continuous 
ranked probability score (CRPS) metrics for high and low flows. See McInerney et al. (2021) for results.  

5. DISCUSSION 

The key findings from Section 4 can be interpreted as follows: 

Reliability. Forecasts of high and low cumulative volumes are more reliable for the MuTHRE-FD model, 
especially for shorter lead times (1-8 days). These improvements can be attributed to the improved 
representation of innovations (random component of errors), which controls the hydrological uncertainty at 
short lead times, and which in turn dominates the total forecast uncertainty at short lead times. At longer lead 
times (e.g. after 2 weeks), the impact of the error model decreases as streamflow forecast uncertainty becomes 
dominated by rainfall forecast uncertainty.  

Sharpness. The MuTHRE-FD model produces sharper forecasts of low flows, and less sharp forecasts of high 
flows; this holds for both daily and cumulative values. Sharper forecasts at low flows are due to the lower 
variability of innovations at low flows, which is captured by the flow-dependent innovation model in 
MuTHRE-FD. Reduced sharpness of high flows is due to the higher variability of innovations at high flows, 
which is also reflected by the flow dependent model, and which represents the reason for improved reliability, 
i.e., MuTHRE-FD is not over-confident. 

For high flows the MuTHRE-FD model offers practically significant improvements in reliability at the expense 
of practically significant worsening in sharpness. The MuTHRE model under-estimates the uncertainty in high-
flow forecasts, and will therefore under-estimate the risk of high-flow events. The MuTHRE-FD model 
overcomes these problems. A common paradigm in forecasting is that reliability takes precedence over 
sharpness, because a prediction that is sharp but unreliable represents overconfidence (e.g., Gneiting and 
Katzfuss 2014). It follows that the large improvements in reliability of high flows obtained by the MuTHRE-
FD model are worth the sacrifice in sharpness.  
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6. CONCLUSIONS 

This work examines flow dependencies in sub-seasonal forecast performance using the MuTHRE model. A 
case study based on 11 catchments in the Murray Darling Basin is employed. The following findings and 
developments are contributed: 

1. Flow stratified performance evaluation indicates that the MuTHRE model under/over-estimates the 
uncertainty for high/low flows, despite the unstratified evaluation across the full flow range suggesting 
forecasts are reliable; 

2. A new non-parametric model is introduced to improve the representation of flow dependencies (FD) in the 
random component (innovations) of the residual error model; 

3. The MuTHRE-FD model improves cumulative volume forecasts, with: 

i. Practically significant improvements in the reliability of high flows out to lead times of 7 days, low flows 
for the first 2 days, and mid flows for 15 out of 28 days; 

ii. Practically significant improvements in sharpness for low flows over all lead times, but practically 
significant widening of forecasts of high flows (reflecting their higher uncertainty); 

More generally, this work demonstrates the benefits of capturing flow dependencies in the residual error 
structure of hydrological models, and the insights achievable from stratified performance assessment when 
evaluating forecast quality. Further information on the MuTHRE-FD model, including full equations and 
evaluation using additional metrics, can be found in McInerney et al. (2021).  
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