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Abstract: Sub-seasonal streamflow forecasts, with lead times up to 30 days, can provide valuable 
information for water management, including reservoir operation to meet environmental flow, irrigation 
demands, and managing flood protection storage. A key aim is to produce “seamless” probabilistic forecasts, 
with high quality performance across the full range of lead times (1-30 days) and time scales (daily to monthly). 
This paper provides an overview of advances towards subseasonal forecasting, by comparing the recently 
developed multi-temporal scale hydrological residual error (MuTHRE) model, one of the first approaches that 
provides seamless subseasonal forecasting, to an existing baseline residual error model and a non-seamless 
monthly streamflow post-processing (QPP) model. This comparison is in terms of model features and also 
through forecast evaluation on 11 catchments in the Murray-Darling Basin using multiple performance metrics, 
across a range of lead times, months and years, and at daily and monthly time scales. Compared to the baseline 
residual error model, the MuTHRE model is shown to provide improvements, in terms of reliability for short 
lead times (up to 10 days), in dry months, and dry years. Forecast performance also improved in terms of 
sharpness (Figure 1). Comparison against the non-seamless monthly QPP model showed MuTHRE provided 
similar reliability and sharpness for monthly forecasts stratified over months and years. This is a remarkable 
achievement, given the non-seamless monthly QPP models “sees” the monthly observed streamflow in 
calibration, whereas the MuTHRE model does not. This study highlights the benefits of modelling multiple 
temporal characteristics of hydrological errors, and demonstrates the power of the MuTHRE model for 
producing seamless sub-seasonal streamflow forecasts that have a wide range of practical benefits, as outlined. 

Figure 1. Streamflow forecasts in the Biggara catchment (401012) during August 2002. Climatology (left) is 
compared with the MuTHRE model (right). Both daily (top) and cumulative forecasts (bottom) are shown. 
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1. INTRODUCTION 

Water management and operations across large river basins have historically focused on releasing and 
delivering water for consumptive purposes (e.g. irrigation), under relatively controlled and predictable flow 
conditions. Prolonged dry conditions and water scarcity in recent decades in many major river basins around 
the world supporting large populations, have led to the development of integrated water resource management 
plans that set the amount of water that can be taken from the basin each year, while leaving enough 
environmental water for the rivers, lakes and wetlands and the plants and animals that depend on them (e.g. 
Hart, 2016). Environmental water management is complex, requiring the release of large volumes of 
environmental water from storages to be delivered over long distances at sub-seasonal or longer time scales to 
achieve a range of environmental targets and outcomes, under both regulated and unregulated conditions. To 
ensure that future water delivery optimises consumptive as well as environmental outcomes, new forecasting 
and planning tools, and streamlined processes are necessary especially at sub-seasonal time scale.  

Considerable benefit can be obtained by producing probabilistic sub-seasonal (0-30 days) forecasts which are 
“seamless” in time; i.e. from a single product that is reliable and sharp across a range of lead times and 
aggregation time scales (White et al., 2017). In large water resource systems, such as the Murray-Darling Basin 
System, with travel times of days to weeks, forecasts of both daily flows and cumulative volumes are required 
both shorter (1-7 days) and longer longer lead times (up to 30 days). Seamless forecasts, i.e., forecasts obtained 
using a single method that maintain high quality across a range of time scales, are clearly attractive in this 
practial application, since a single users can rely on single forecast product to achieve multiple benefits at 
different spatial and temporal scales within the river system .  

The study provide an overview of the key advances towards seamless subseasonal forecasting. This is 
undertaken by comparing the recently developed multi-temporal hydrological residual error (MuTHRE) model, 
one of the first approaches that provides seamless subseasonal forecasting, to an existing baseline residual error 
model and a non-seamless monthly QPP model. This comparison is in terms of model features and also through 
forecast evaluation metrics. The paper ends by providing a summary of the key benefits of the MuTRHE 
approach to seamless subseasonal forecasting.  

2. STREAMFLOW FORECASTING MODELS  

2.1. MuTHRE Model for Seamless Subseasonal Forecasting.  

Streamflow forecasts are subject to uncertainty in rainfall, associated with predicting future rainfall, and 
hydrological errors, associated with uncertainty in model structure, initial conditions and parameters. In order 
to represent both sources of uncertainty in streamflow forecasts, the “ensemble dressing” approach (Pagano et 
al., 2013) is often implemented, whereby (i) replicates of forecast rainfall are propagated through a rainfall-
runoff model, and (ii) a residual error model is used to add hydrological errors to each streamflow replicate. 

A key challenge is the development of the residual error model, which must capture relevant features of 
hydrological errors. It is well-known that hydrological errors are heteroscedastic (larger errors for larger flows) 
and persistent (similar errors for consecutive times), and these features are typically represented in residual 
error models (e.g., McInerney et al. (2017)). However, other important features which are less commonly 
represented include 

• Seasonal variability, due to hydrological models being unable to appropriately capture seasonal variations 
in streamflow (e.g., Woldemeskel et al. (2018));  

• Dynamic biases, i.e., shifts in the mean of hydrological errors over longer time periods (e.g. month to year) 
due to hydrological non-stationarity (e.g., Westra et al. 2014); 

• Non-Gaussian errors. The random component (innovation) of residual error models are commonly 
assumed to follow a Gaussian distribution models (e.g., McInerney et al. 2017). However, recent studies 
have found that non-Gaussian distributions better capture extreme errors (e.g., Li et al. 2016)    

The Multi-Temporal Hydrological Residual Error (MuTHRE) model is the first residual error model (to the 
best of the authors’ knowledge) which represents these three temporal error characteristics (i.e., seasonal 
variability, dynamic biases and non-Gaussian innovations). See McInerney et al. (2020) for the details of how 
these components are represented and also for a comprehensive evaluation of how these three features provide 
the MuTHRE model with ability to provide seamless subseasonal forecasts. model. This paper will provide 
highlight some key outcomes from McInerney et al. (2020).  
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2.2. “Baseline” Residual error model 

The first model that the MuTHRE is compared against is a “baseline” residual error model. This baseline 
residual error only includes the heteroscedasticity (using Box-Cox transformation), persistence (using an AR(1) 
model) and uses Gaussian errors. It does not include seasonality, dynamic biases or mixed Gaussian for extreme 
errors (Figure 2). In terms of its application in forecasting mode, the baseline residual error model follows the 
same ensemble dressing approach as the MuTHRE model.  

Figure 2. Key differences between MuTHRE and Baseline Residual Error Model 

2.3. Non-seamless Monthly QPP Model 

The second model used for comparison is the non-seamless Monthly QPP model of Woldemeskel et al. (2018). 
This model is referred to as non-seamless because it only provides streamflow forecasts at the monthly time 
scale, in comparison to the MuTHRE model which provides daily streamflow forecasts which can be easily 
aggregated to the monthly time scale (see Figure 2). Another key difference is that during model calibration, 
the non-seamless monthly QPP is calibrated against monthly observed streamflow, hence, its parameters “see” 
the monthly observed streamflow. In contrast the MuTHRE model is calibrated to daily observed streamflow, 
so its parameters do not “see” the monthly observed streamflow - when its MuTHRE monthly forecasts are 
evaluated it is essential undertaking temporal extrapolation. Hence, comparison of these two models’ ability to 
match monthly observed streamflow will be a strong test of the MuTHRE model’s seamless streamflow 
forecasting capabilities. 

Figure 3. Key differences between seamless daily forecasts of MuTHRE and non-seamless monthly QPP 
in forecasting mode 

3. CASE STUDY

3.1. Hydrological data and model 

We compare forecasts from the MuTHRE, baseline, and non-seamless monthly QPP models using a case study 
with 11 catchments in the Murray Darling Basin (McInerney et al., 2020). Daily time series of observed rainfall, 
PET and streamflow over a 22-year period from 1991-2012 are obtained from the Bureau of Meteorology’s 
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Hydrologic Reference Stations (HRS) dataset. Rainfall forecasts are taken from the Australian Community 
Climate Earth-System Simulator - Seasonal (ACCESS-S) and post-processed to reduce biases and improve 
reliability (Schepen et al., 2018). The GR4J rainfall-runoff model is used as the deterministic model. A moving-
window leave-one-year-out cross-validation procedure is used for calibration and evaluation. Forecasts are 
produced from the first day of each month, and extended out to lead times of one month. 

3.2. Forecast evaluation 

We evaluate forecast performance in terms of reliability and sharpness. The reliability of forecasts is defined 
such that a forecast is deemed reliable if the forecast probabilities are statistically consistent with observations, 
(i.e. the 90% forecast probability limits capture 90% of the observations). This is quantified using the 
commonly used reliability metric (see McInerney et al, 2017 for details). Sharpness (i.e., 
uncertainty/width/spread in the forecast distribution) is quantified as a skill score by the average ratio of the 
90% limits of the forecast distribution and the 90% limits of the climatology. Lower metric values indicate 
better performance. See McInerney et al. (2020) for further details of metrics.  

Forecasts are evaluated over (i) multiple time scales from daily to aggregated monthly forecasts, and (ii) 
multiple stratification types, including by lead time, month and year. Practical significance tests are used to 
determine whether the MuTHRE model has better or worse performance metrics than the baseline residual 
error model or the non-seamless monthly QPP over the range of catchments, and whether these differences are 
of practical relevance (defined as a difference by more than 10% of the median metric value for the baseline 
or non-seamless monthly QPP, depending on which model is used for comparison.    

4. RESULTS

4.1. Forecast Time series 

Figure 1 provides an illustration of daily and cumulative streamflow forecasts from the MuTHRE model in the 
Biggara catchment (401012) during August 2002. The comparison is against ‘climatology’ which uses the 
historical range of streamflow from the observed record, and is commonly used in industry for streamflow 
forecasting. For daily forecasts, the observations lie within the 90% predictive limits for both climatology 
(Figure 1a) and the MuTHRE model (Figure 1b). However, forecasts from the MuTHRE model are much 
sharper than climatology. These forecasts are sharpest for short lead times, but are still considerably sharper 
than climatology for longer lead times. Similarly, 90% limits for cumulative forecasts from the MuTHRE 
model (Figure 1d) capture the observed values, and are much sharper than climatology.     

4.2. Comparison against Baseline Daily Residual Error Model 

Daily forecasts 

Figure 4 compares performance of daily forecasts from the MuTHRE and baseline models for different lead 
times. The MuTHRE model provides consistent good reliability over all lead times (Figure 4a), and practically 
significant improvements over the baseline model for short lead times (10 out of the first 11 days). MuTHRE 
forecasts are much sharper than climatology, especially for short lead times (e.g. median value of 0.2 for lead 
time of 1 day corresponds to 80% reduction in uncertainty). Compared to the baseline model, sharpness 
improves for all lead times (Figure 4b), although these are not classified as practically significant.  

Monthly forecasts 

Figure 5 compares the reliability of monthly forecasts when stratified by month and year. The MuTHRE model 
provides consistent reliability over all months (Figure 5a), with practically significant improvements over the 
baseline model in 6/7 dry months (November-May). The MuTHRE model also provides improvements in 
reliability when stratified by year – these are largest in dry years (2006-2009).      
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Figure 4. (a) Reliability and (b) sharpness metrics when streamflow forecasts from the MuTHRE and 
baseline residual error model are stratified by lead time. Lines represent median metric values calculated over 

the 11 catchments, whiskers represent 90% limits, and circles indicates lead times for which the MuTHRE 
model produces practically significant better performance than the baseline model. 

Figure 5. Reliability metrics when monthly forecasts from the MuTHRE and baseline residual error model 
are stratified by (a) month, and (b) year. 

4.3. Comparison against non-seamless Monthly QPP model 

The performance of the monthly forecasts from the seamless MuTHRE and the non-seamless monthly QPP is 
shown in Figure 6, when stratified by month (left column) and year (right column).  

In terms of reliability, Figure 6a shows that when performance is stratified by month, the two models have 
similar reliability for all 12 months. When stratified by year Figure 6b,  the MuTHRE model offers similar 
reliability to the monthly QPP model for 20 out of the 22 years, with the non-seamless monthly QPP model 
offering practically significant improvements in 2 of the 22 years (Figure 5b). In terms of sharpness, Figure 6c 
shows that when sharpness is stratified by month, the seamless MuTHRE model provides practically significant 
improvement in 1 month (September) and similar performance in the other 11 months. Figure 6d shows 
sharpness stratified by year is similar for both models for all years. 

This similarity in performance between the seamless MuTHRE model and non-seamless monthly QPP model 
is a remarkable achievement that illustrates the seamless forecasting capability of the MuTHRE model. As 
outlined in section 2.3, when evaluating the ability of monthly forecasts to capture the monthly observed 
streamflow, the MuTHRE model’s ability to undertake temporal extrapolation is being evaluated – it does not 
“see” the monthly observed streamflow during its model calibration. In contrast, the non-seamless monthly 
QPP model is being evaluated against its ability to capture monthly observed streamflow that it “sees” during 
model calibration. Given this key difference the result that they give similar performance is remarkable.  
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Figure 6. Monthly performance of the seamless MuTHRE and non-seamless monthly QPP forecasts in terms 
of reliability (top row), sharpness (2nd row), Stratification is performed by month of the year (left column) and 
by year (right column). Circles/squares indicate that the MuTHRE model performs practically significant 
better/worse than the monthly QPP model. 

5. PRACTICAL BENEFITS OF SEAMLESS SUB-SEASONAL STREAMFLOW FORECASTS

The results presented showed the MuTHRE model’s ability to produce seamless sub-seasonal streamflow 
forecasts. Seamless subseasonal streamflow forecasts with consistent reliability enables water resource 
managers to confidently utilize sub-seasonal forecasts for decision support in a wide range of applications, 
including:     

 Easily integrate daily streamflow forecasts into exisiting daily river system models, such as eWater Source.
River system models are commonly run with historical streamflow inputs (i.e. climatology), so utilizing
reliable and sharp sub-seasonal streamflow forecasts would enable improved decision making through
better quantifying uncertainty.

 Utilising forecasts for lead times up to 1 month can improved reservoir management of rural water supplies
with irrigations demands and environmental flows (Murray-Darling Basin Authority, 2019). For example,
if a high streamflow event is forecast with high degree of reliability, the manager could delay/avoid
releasing water for environmental flows, and prevent wasting water.

 Forecast informed flood control. Sub-seasonal forecasts can inform the management of multi-purpose
reservoirs that serve as both water supply and downstream flood protection services. For example, large
volumes of streamflow are forecast, reservoir operators can release water in advance to provide additional
flood storage and reduce risks of flooding. This is dependent on the evaluation of forecasts for high flow
events, relevent for flood applications - see McInerney et al (2021) for further details.

 Operation of urban water supply systems, which benefit from aggregated monthly forecasts (Zhao and
Zhao, 2014). Reliable forecasts can inform managers about whether urban demand can be met from river
flows, or whether water needs to be transferred between multiple reservoirs or sourced from desalination.

6. CONCLUSIONS

This paper provided an overview of the advances in subseasonal forecasting, provided by the development of 
the Multi-Temporal Hydrological Residual Error (MuTHRE) model. The key differences between the 
MuTHRE and baseline residual error models are that the MuTHRE model accounts for wide range of 
charactersitics of hydrological errors at multiple time scales, including seasonality, dynamic biases, and 
extreme errors. Comparison againist an existing non-seamless monthly QPP showed the key difference was 
that the MuTHRE model was able to produce seamless subseasonal forecasts at daily, weekly and monthly 
time scales, while the non-seamless monthly QPP model could only produce forecasts at monthly time scales. 
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This comparison included forecast evaluation on 11 case study catchments in the Murray Darling Basin. The 
results showed that the MuTHRE model outperforms an existing baseline residual error model to produce 
seamless sub-seasonal forecasts, with consistent reliability over lead times (1-30 days), timescales (daily to 
monthly), and all months and years. In particular the MuTHRE model provides large improvements in 
relaibility for short lead times, dry months and dry years, as well as improvements in sharpness. 

Comparison against an existing non-seamless monthly QPP model showed the MuTHRE model provided 
similar reliability and sharpness for monthly forecasts stratified over months and years. This is a remarkable 
achievement, given that non-seamless monthly QPP model “sees” the monthly observed streamflow in 
calibration, whereas the MuTHRE model does not, and instead is undertaking temporal extrapolation from 
daily to monthly.   

The practical benefits of sub-seasonal streamflow forecasts for a wide range of water management applications 
were outlined. The consistent high quality performance of the MuTHRE model over multiple lead times (1-30 
days) and time scales (daily to monthly) provides confidence in the suitability of forecasts for multiple practical 
applications, including their use in river system models to optimize water delivery for irrigation and 
enorinmental outcomes.    

Further information on the MuTHRE model, including comprehensive analysis of forecast performance and 
detailed algorithms, can be found in McInerney et al. (2020).  
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