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Abstract:   Catchment water quality models are an important tool for understanding the impacts of land 

management practice on the water quality of the receiving waters of the Great Barrier Reef lagoon. As part of 

the Paddock to Reef program the Great Barrier Reef Catchment Loads Modelling Program estimates average 

annual loads of key pollutants (sediment, nutrients and pesticides) for each of the 35 catchments draining to 

the Great Barrier Reef. Since catchment models assume that constituent generation and transport within the 

catchment is largely controlled by rainfall and runoff, it is imperative that the hydrology calibration 

approach underpinning the catchment model is rigorous and achieves the best possible results. Because 

catchment models are conceptual representations of very complex landscape systems any forecasts and 

predictions they produce will be subject to uncertainty and quantifying uncertainty is an important aspect of 

analysing model performance.  

Various methods derived from a range of statistical frameworks have been applied to study uncertainty 

of rainfall-runoff models. Perhaps the most intuitive way of approaching uncertainty analysis is via the 

formalism of Bayes’ theorem where some prior understanding of the model parameters is updated once 

exposed to relevant data. As elegant as Bayesian uncertainty analysis may be, there are practical 

limitations to implementing it. The equations defining Bayes’ theorem often have no analytic solution, or at 

least one that is tractable, one must resort to numerical methods to complete the process. In practice, this 

usually involves a campaign of stochastically sampling from the Bayesian posterior distribution to construct 

a statistical facsimile. This can be a computationally exhausting process, particularly when an expensive 

model is used, the prior is significantly divergent from the posterior and a large number of parameters is 

involved.  

Ensemble methods such as the iterative ensemble smoother (IES) have been developed to alleviate much of 

the computational overhead demanded by the uncertainty quantification of environmental models, 

particularly those that involve high dimensional parameter spaces. On the face of it, the IES would seem to fit 

very well with the problem presented by catchment water quality models but to date, there is very little 

evidence of this. In this study, we apply a Gauss-Levenberg-Marquardt form of the IES to the 

calibration and uncertainty analysis of a rainfall-runoff model. The IES is found to be an efficient and 

powerful method for conditioning model parameters and providing robust uncertainty estimates adhering to 

the spirit of Bayesian statistics.  
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1. INTRODUCTION

The use of the Iterative Ensemble Smoother (IES) (Evensen, 2018) for solving inverse problems encountered 

in the fields of reservoir-engineering and groundwater modelling is well established (Oliver et al., 2008). The 

veritable symphony of available literature covering this topic does not however prepare one for the sound of 

crickets accompanying a search for reports on IES applications in the field of surface water modelling. 

Surface water models, such as conceptual rainfall-runoff (CRR) models can be computationally expensive and 

estimating appropriate parameter values may be a complex undertaking. For reliable decision making, CRR 

model parameter uncertainties are also required. Within the Bayesian paradigm, parameter uncertainties can 

be estimated by stochastically sampling the posterior distribution using Markov-chain Monte-Carlo (MCMC) 

methods for example. The computational expense of this type of sampling may be prohibitive depending on 

the complexity of the model and the dimensionality of the model parameter set. Although sampling efficiency 

can be significantly improved through the use of sequential Monte-Carlo sampling or the Metropolis-Hastings 

algorithm, the number of model evaluations required to satisfactorily populate the posterior density can still 

render the approach impractical for all intents and purposes. 

Compared to the more stochastically driven approaches, Ensemble based methods have a major advantage in 

that they require much fewer model evaluations, particularly for higher dimension problems. Ensemble 

methods are theoretically grounded in Bayesian statistics and commence by drawing an ensemble of model 

parameters from a multivariate prior distribution. Informed by the available data, each realization from the 

parameter prior is then maximum a posteriori conditioned to give a sample from the posterior distribution. The 

ensemble smoother (ES) (Leeuwen, 2001) is a modification of the sequential ensemble Kalman filter (EnKF) 

(Evensen, 1994).  Although the Kalman filter and the Ensemble Smoother are closely related mathematically, 

there are important distinctions in their emphasis. Where the Kalman filter seeks to recursively estimate states 

and/or parameters, assimilating information one step at a time, the ensemble smoother works in “batch” mode, 

running the model over the entirety of its simulation time. This latter methodology is much more typical of the 

approach generally employed for rainfall-runoff model parameter calibration studies. The IES improved upon 

the ES by updating the parameters in a number of finite incremental steps which served to address problems 

associated with non-linear response of the forward solver.  

Several algorithms have been proposed controlling how the IES updates parameters at each iteration (Evensen, 

2018). In this study, we investigate the use of the Levenberg–Marquardt ensemble randomized maximum 

likelihood (LM-EnRML) algorithm of Chen and Oliver (Chen and Oliver, 2013) for assimilating streamflow 

data in a CRR model. The Levenberg–Marquardt method regularizes the direction and length of the parameter 

update step. Problems that may be encountered due to highly nonlinear responses to parameter movement can 

be avoided by including a step damping parameter, particularly during the early iterations.    

2. STUDY AREA – CATTLE CREEK CATCHMENT

The Mackay Whitsunday NRM region covers 

about 9,130 km2 and comprises the Pioneer, 

Proserpine and O’Connell Rivers, and Plane Creek 

basins draining to the Great Barrier Reef lagoon. 

The Whitsunday Islands group is situated off the 

coast between Bowen and Mackay. Upper Cattle 

Creek is a tributary of the Pioneer River located in 

the west of the Mackay Whitsunday region. The 

catchment area receives high annual rainfall in 

excess of 3000 mm. The highlands in the 

headwaters of Upper Cattle Creek catchment are 

heavily timbered with rainforest while the lower 

reaches are dominated by open woodland. 

Eungulla protects over 70% of the catchment area 

on these steep upper slopes. On the alluvial 

floodplains 14% of the catchment is under cane 

production, and 13% under grazing. Downstream, 

Mirani Weir creates a barrier to fish migration for 

the Upper Cattle Creek flow. 

Figure 1. Map of the Cattle Creek catchment showing the 

Gargett flow observation point 125004B 
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3. METHODOLOGY

3.1. The iterative ensemble smoother 

The problem being considered is the estimation of an unknown set of model parameters represented by the 

vector 𝑚 ∈ ℝ𝑁𝑚  given observational data 𝑑𝑜𝑏𝑠 ∈ ℝ𝑁𝑑. Assuming a non-linear model, 𝑔, 𝑑𝑜𝑏𝑠 can be estimated

by 

𝑑𝑜𝑏𝑠 = 𝑔(𝑚) + 𝜖 (1) 

where 𝜖 is a random error from which the likelihood 𝑝(𝑑𝑜𝑏𝑠|𝑔(𝑚)) arises.

Within the Bayesian framework, the conditional posterior probability density function (PDF) is related to the 

likelihood and prior PDFs through Bayes theorem 

𝑝(𝑚|𝑑𝑜𝑏𝑠) ∝ 𝑝(𝑑𝑜𝑏𝑠|𝑔(𝑚)) 𝑝(𝑚) (2) 

where 𝑝(𝑚) is the Bayesian prior PDF of 𝑚. If the assumption that the observation errors are normally 

distributed is imposed then 

𝑝(𝑑𝑜𝑏𝑠|𝑔(𝑚)) ∝ exp [−
1

2
(𝑑𝑜𝑏𝑠 − 𝑔(𝑚))

𝑇
𝐶𝐷

−1(𝑑𝑜𝑏𝑠 − 𝑔(𝑚))] (3) 

where 𝐶𝑑 is the covariance matrix of the observation errors. Likewise, if the prior distribution is also Gaussian 

then    

𝑝(𝑚) ∝ exp [−
1

2
(m − 𝑚𝑝𝑟)

𝑇
𝐶𝑚

−1(m − 𝑚𝑝𝑟)] (4) 

Where 𝑚𝑝𝑟 is the prior parameter estimate and 𝐶𝑚 is the covariance matrix of the prior distribution. 

If unconditional realisations of the parameter prior, 𝑚𝑢 , and the data likelihood, 𝑑𝑢 , are drawn from their 

respective PDFs, it is straight forward to show using Equations 3 and 4 that an estimate of the maximum a 

posteriori (MAP) can be found by minimizing the objective function 

𝑂(𝑚) = (𝑑𝑢 − 𝑔(𝑚))
𝑇

𝐶𝐷
−1(𝑑𝑢 − 𝑔(𝑚)) + (𝑚 − 𝑚𝑢)𝑇𝐶𝑀

−1(𝑚 − 𝑚𝑢). (5) 

which generates an approximate sample from the conditioned posterior. 

The option for minimizing the objective function in Equation 5 that will be investigated here is the regularised 

Gauss-Levenberg-Marquardt algorithm (GLM) with an iterative parameter improvement given by: 

𝑚𝑙+1 = 𝑚𝑙 − [(1 − 𝜆𝑙)𝐶𝑀
−1 + 𝐽𝑙

𝑇𝐶𝐷
−1𝐽𝑙]−1[𝐶𝑀

−1(𝑚𝑙 − 𝑚𝑢) + 𝐽𝑙
𝑇𝐶𝐷

−1(𝑔(𝑚𝑙) − 𝑑𝑢)] (6) 

where 𝑚𝑙 is the parameter vector from the 𝑙𝑡ℎ iteration, 𝐽𝑙 is the Jacobian matrix of 𝑔 evaluated at 𝑚𝑙 and the

scalar 𝜆𝑙 is the “Marquardt lambda” that assists in accommodating model nonlinearity in the inversion process. 

A population of samples from the posterior PDF can now be generated by repeatedly calibrating unconditional 

realisations using the MAP form of the GLM in Equation 6.  

It is obvious however that the major computational burden for this method of sampling from the posterior is 

the filling of the Jacobian matrix at each GLM iteration, particularly when numerical derivatives are used, and 

the generative model is computationally expensive. The number of model evaluations required to fill the 

Jacobian scales linearly with the number of parameters being optimised. As ( )O m  needs to be minimised for 

each realisation, the effort involved in drawing a satisfactory number samples from the conditioned posterior 

can render this method wildly impractical for all intents and purposes. 

In order to address this burden, Chen and Oliver have proposed an empirical approximation to the Jacobian 

using an iterative ensemble smoother (IES) that can substantially reduce the computational effort. The resulting 

ensemble GLM is 
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𝑚𝑙+1
𝑒 = 𝑚𝑙

𝑒 − [(1 − 𝜆𝑙)𝐶𝑀
−1 + 𝐽𝑒𝑚𝑝,𝑙

𝑇 𝐶𝐷
−1𝐽𝑒𝑚𝑝,𝑙]

−1
[𝐶𝑀

−1(𝑚𝑙
𝑒 − 𝑚𝑢

𝑒 )

+ 𝐽𝑒𝑚𝑝,𝑙
𝑇 𝐶𝐷

−1(𝑔(𝑚𝑙
𝑒) − 𝑑𝑢

𝑒 )]
(7) 

where, for an ensemble of 𝑁𝑒 realisations, 𝑚𝑙
𝑒 and 𝑚𝑢

𝑒  are the current and unconditioned parameter ensembles

( )e mN N , 𝑑𝑢
𝑒  is the initial observation ensemble (𝑁𝑒 × 𝑁𝑑) and 𝑔(𝑚𝑙

𝑒) are the modelled data evaluated at

𝑚𝑙
𝑒. The empirical ensemble Jacobian can now be found by solving the equation

𝛥𝑑𝑙
𝑒 ≈  𝐽𝑒𝑚𝑝,𝑙 𝛥𝑚𝑙

𝑒 (8) 

giving 

𝐽𝑒𝑚𝑝,𝑙 ≈ 𝐶𝐷
1 2⁄

𝛥𝑑𝑙
𝑒(𝛥𝑚𝑙

𝑒)−1𝐶𝑀
−1 2⁄

(9) 

where 

𝛥𝑑𝑙
𝑒 = 𝐶𝐷

−1 2⁄
(𝑔(𝑚𝑙

𝑒) − 𝑔(𝑚𝑙
𝑒)̅̅ ̅̅ ̅̅ ̅̅ ) √𝑁𝑒 − 1⁄  (10) 

and 

𝛥𝑚𝑙
𝑒 = 𝐶𝑀

−1 2⁄
(𝑚𝑙

𝑒 − 𝑚𝑙
𝑒̅̅ ̅̅ ) √𝑁𝑒 − 1⁄  (11) 

With this formulation of the IES, the model only has to be evaluated once for each member of the ensemble to 

construct the empirical Jacobian which can substantially reduce the computational burden, especially when 

calibrating a large number of parameters.  

The present study employs the pest-ies tool which is a model independent implementation of GLM-IES (White, 

2018).  

3.2. Rainfall runoff model 

Table 1. Parameter descriptions and ranges used in the Sacramento model and refined in the assimilation 

process 

Parameter Description Range 

UZTWM Upper Zone Tension Water Storage Maximum (mm) 12 – 180 

UZFWM Upper Zone Free Water Storage Maximum (mm) 5 – 155 

UZK Upper Zone Lateral Drainage Rate 0.1 – 1.0 

ZPERC The potential increase in percolation from saturated to dry conditions 1.0 – 600 

REXP Exponent in Percolation Relationship 1.0 – 10.0 

PCTIM Permanently impervious fraction of the basin 1.0E-5 – 0.25 

SARVA Fraction of the basin covered by streams, lakes, and riparian vegetation 1.0E-5 – 0.11 

SSOUT Subsurface outflow along the channel (mm/day) 1.0E-5 – 0.11 

ADIMP Fraction of the basin becomes impervious as all tension water are met 1.0E-5 – 0.15 

PFREE Proportion of percolated water directly enters Free Water Storage 1.0E-2 – 0.5 

LZTWM Lower Zone Tension Water Storage Maximum (mm) 1.0E-10 – 600 

LZFSM Lower Zone Free Water Supplementary Storage Maximum (mm) 1.0 – 350 

LZFPM Lower Zone Free Water Primary Storage Maximum (mm) 1.0 – 600 

LZSK Lower Zone Supplementary Drainage Rate 1.0E-3 – 0.9 

LZPK Lower Zone Primary Drainage Rate 1.0E-3 – 0.6 

RSERVE Fraction of lower zone free water unavailable for transpiration 0.2 – 0.4 

SIDE The ratio of non-channel baseflow (deep recharge) to channel (visible) baseflow. 1.0E-5 – 0.1 

ROUTC Regional constant calculated from reach length 1.0 – 1.0E6 

ROUTP Routing parameter power 0.6 – 0.1 
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4. RESULTS AND DISCUSSION

Results from the IES analysis are based on ensemble composed of 500 data realisations and corresponding 

parameters. The final posterior distributions of the IES parameters are shown in Figure 2. Most parameters 

appear to be well identified with symmetrical distributions about the mean. The UZTWM distribution is clipped 

at higher values and it may be interesting to investigate the effects of increasing the upper bound on the allowed 

parameter range. 

Figure 2. Marginal posterior parameter distributions. For convenience, the parameter ranges from 

Table 1 have been transformed to span a uniform range of 0-100. The results are presented in the 

upper and lower panels of the graphic which both include the same prior distribution for comparison. 

Figure 3 shows a short, extracted flow timeseries comparison 

between the observed streamflow data and the median flow 

value from the final IES data ensemble. The observed and 

simulated stream flows are in good agreement generally 

depicting satisfactory flow magnitudes and flow rise and fall 

characteristics.  

Conventional quantitative statistics can be used to 

understand the performance of the ensemble. Table 2 

summarises the distribution of the Nash-Sutcliffe efficiency 

coefficient (NSE) (Nash and Sutcliffe, 1970), r2 and PBIAS 

for simulated ensemble members and paired data noise 

realisations. The mean NSE of 0.882 with a small standard 

deviation of 0.002 based on 500 samples suggests that all 

ensemble realisations are performing very well with no 

significant deviations. The PBIAS spread is interesting with a standard deviation of 0.43% around a mean of 

3.38% hinting that there may be a systematic tendency to overestimate the aggregated discharge volume 

independently of starting parameters and data perturbation. Considering that all elements of the ensemble 

match their corresponding data realisation  with a PBIAS < 5.0% is still a pleasing result suggesting that the 

Sacramento model is skilfully able to predict stream flows satisfactory.  

Table 2. mean and standard deviation 

of model performance 

statistics aggregated over the ensemble 

  

NSE 0.882 0.002 

r2 0.883 0.002 

PBIAS 3.38% 0.43% 
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Figure 3. Comparison of predicted daily flow with observed daily flow at gauging station 

5. CONCLUSIONS

This study investigated the use of the (LM-EnRML) form of the IES for estimating Sacramento CRR model 

parameter uncertainty for the Cattle Creek catchment. An ensemble of 500 prior parameter sets were 

simultaneously assimilated to corresponding data realisations drawn from a noise distribution placed around 

the observed streamflow data. Following optimization, an analysis of the performance of each individual 

ensemble member showed a very narrow range of performance statistic values (NSE, r2 and %bias) suggesting 

that the posterior ensemble was well balanced with no anomalous behaviour. Almost all Sacramento parameters 

were well identified apart from RSERVE where the marginal posterior distribution deviated only slightly from 

the prior and UZTWM which was discussed in the previous section.  

Even though this study presents a single case study, experience in our group suggests that the IES appears to 

be a powerful tool for uncertainty analysis of CRR models. Where the distribution of data measurement errors 

can be satisfactorily represented by a multivariate normal distribution, the IES should yield a good estimation 

of the Bayesian posterior when a gaussian prior is placed on the parameters. Although several flavours of the 

IES exist, the Levenberg–Marquardt form should be among the most robust when it comes to handling 

nonlinearities on the model response function hypersurface.  

In the case where the model inversion problem is ill-posed and the data has a degree of Gaussian uncertainty, 

the formulation of the IES is such that a valid Bayesian posterior should result. This is strictly true in the case 

of an exact model and linear response function and is approximate in the nonlinear case (Evensen, 2018). When 

model structural error begins to dominate and surpasses the magnitude of the data uncertainty, the IES will 

begin to suffer the same problems as any method that doesn’t account for model deficiencies such as 

systematically biased parameter estimates. Investigations into how to account for more epistemic sources of 

uncertainty is the subject of ongoing work (Vilas et al., 2021).   
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