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Abstract: At the last MODSIM conference I illustrated two common pitfalls that may present themselves
during the design and analysis of simulation experiments (Gill 2019). The first provided good reason to seek
and employ orthogonal designs, such as two-level fractional factorials or orthogonal Latin Hypercubes (Mont-
gomery (2012) provides a good introduction). The second pitfall belies the analysis of simulation experiments
and the potential dangers of making the common independent and identically distributed (iid) assumptions on
the regression residuals. Such assumptions allow the classic Analysis of Variance (ANOVA) statistical pro-
cedures to be employed, as taught in statistical texts such as Montgomery (2012) and others, and are often
standard on statistical software (e.g., Minitab and JMP). However, in simulation experiments the assumption
of identically distributed responses at each design point is often not met in practice. In fact, heteroscedasticity
is more often the norm and Law (2007) provides examples where the variances can differ by an order of magni-
tude or more, and while our control over the assignment of the pseudo-random number (PRN) streams within
simulations does allow us to ensure independent responses at all design points, the use of common random
numbers (CRNs) is increasingly popular, as it is helpful in the debugging phase of scenario development.

In Gill (2019) I used a numerical experiment with a stochastic simulation (JFORCE, see Au et al. (2018)) to
illustrate how the precision (variance) associated with linear regression coefficients can differ if iid is assumed,
and the subsequent possibility of making incorrect inferences such as false negatives (declaring a factor as
unimportant when it isn’t) as a result. However, that paper necessarily skipped over much of the underpinning
statistical and mathematical derivations. It also alluded to, but did not expand upon, an alternative motive
for employing CRNs, as a variance reduction technique (VRT) similar to the use of blocking in physical
experiments, which practitioners may be unaware of.

The intent of this paper is to fill those gaps. Purely for ease of exposition purposes, it will use very simple lin-
ear regressions (one or two factors) to enable derivations of various regression coefficient confidence interval
constructions, as well as to illustrate how the assignment of PRNs might be exploited to our (analytical) advan-
tage. Doing so will clearly illustrate how heteroscedasticity and dependence can influence linear regression
analysis. Seminal references, though perhaps less well-known nowadays, on how these simple illustrations
generalise to more practical multiple linear regression problems will then be described.

Construction of confidence intervals (CIs) for linear regression modelling is a key element of simulation an-
alytics, to test the statistical significance of the influential factors and to bound their magnitude. However,
too often the simplifying assumptions of iid residuals are used in statistical texts and/or software. This paper
hopes to persuade the reader that such assumptions need not be made, and by reintroducing the work of Scheffé
(1959) provide the mathematical background to procedures in the general case. In particular, the notion that
independence of the simulation response to a designed experiment is a virtue, is hopefully dispelled. Indeed,
the unique ability to control simulation’s randomness should instead be viewed as an opportunity, to increase
the precision of the linear regression CIs. The seminal work of Schruben & Margolin (1978) provides the
optimal strategy of assigning the PRN streams for this goal.

Future research will focus on two extensions. First, while factorial designs are known to be optimal for
multivariate linear regression when iid assumptions are met, the presence of heteroscedasticity has been shown
to require the search for an alternative optimal design (Atkinson & Cook 1995). Second, for simulation
responses that are not continuous (e.g., binary or count), generalised linear regression is used, and it is not
clear that the assignment strategy of Schruben & Margolin (1978) will automatically apply. I hope to share the
outcomes from this research at MODSIM 2023.
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1 INTRODUCTION

Simple linear regression (SLR) involves one factor x sampled at two or more levels. Suppose, however, that
we take only two observations. Without loss of generality let x1 = +1 and x2 = −1, and let y1 and y2 denote
the respective response values. Using the most common fitting criteria of Ordinary Least Squares (OLS), then
the estimators for the two regression coefficients of the line that passes through these points (ŷ = β̂0 + β̂1x)
are β̂0 = 1

2 (y1 + y2) and β̂1 = 1
2 (y1 − y2). To obtain confidence intervals (CIs) for the true β0 and β1 we

need to treat β̂0 and β̂1 as random variables (RVs) and calculate both their mean and variance. Now:

E[β̂0] =
1

2
(β0 + β1 + E[ε1] + β0 − β1 + E[ε2]) = β0 as E[εi] = 0 (1)

and where εi = yi − (β0 + β1xi). Likewise for β̂1, which confirms that these estimators are unbiased.
Concerning the variance, if y1 and y2 are independent then:

var(β̂0) = var(
y1
2

) + var(
y2
2

) =
1

4
(σ2

1 + σ2
2) (2)

where var(yi) = var(εi) = σ2
i . We can likewise trivially show that var(β̂1) = var(β̂0). However, the two

estimators’ covariance:

cov(β̂0, β̂1) = cov(
y1 + y2

2
,
y1 − y2

2
) =

σ2
1 − σ2

2

4
6= 0 if σ2

1 6= σ2
2 , (3)

so heteroscedasticity (unequal variances) induces correlated OLS estimators, which falsifies the notion that
independence and an orthogonal design (which x1 = +1, x2 = −1 is) are sufficient to analyse β̂0 and β̂1
independently. If y1 and y2 are also not independent then:

var(β̂0) =
1

4
var(y1) +

1

4
var(y2) +

1

2
cov(y1, y2) =

σ2
1 + σ2

2 + 2σ12
4

(4)

var(β̂1) =
1

4
var(y1) +

1

4
var(y2)− 1

2
cov(y1, y2) =

σ2
1 + σ2

2 − 2σ12
4

(5)

where cov(yi, yj) = cov(εi, εj) = σij 6= 0 (cov(β̂0, β̂1) remains unchanged), so dependency (non-
independent data) induces unequal standard errors (square root of the variance) in OLS estimators. This
example therefore illustrates nicely an interesting duality, in that violation of the identically distributed data
assumption causes dependent OLS estimators, and violation of the independent data assumption causes non-
identically distributed OLS estimators.

The remainder of the paper is organised as follows. Section 2 derives mathematically various CIs for SLR,
depending on the assumptions made. Motivated by observing unequal estimator variances, Section 3 then uses
linear regression with two factors to illustrate how the user’s control over the implementation of randomness in
simulation might be exploited to improve the efficiency of statistical analyses. Section 4 briefly (re)introduces
key elements of seminal works by Scheffé (1959) and Schruben & Margolin (1978) which generalise these
illustrations, before Section 5 concludes with potential research avenues.

2 SIMPLE LINEAR REGRESSION AND CONFIDENCE INTERVAL CONSTRUCTION

Given possible violations of the iid assumptions, how might OLS CIs be constructed? For concreteness, and
for ease of exposition, assume that we know that σ2

1 = 1, σ2
2 = 2, σ12 = 0.5 so var(β̂0) = 1, var(β̂1) = 0.5

and cov(β̂0, β̂1) = −0.25. If we simply ignore the fact the estimators are correlated (i.e., assumed β̂0 and β̂1

are now independent), the well-known individual CIs for βi would be given by β̂i ±
√
var(β̂i)× zα/2 would

apply, where zα/2 is the critical value from the Normal distribution and 1−α is the confidence level, so that:

CIs: Identically Distributed: β̂0 ± 1.000× zα/2 and β̂1 ± 0.707× zα/2. (6)

If we further assumed independence, then since var(β̂i) = 1
4 (σ2

1 + σ2
2), the result become:

CIs: iid: β̂0 ± 0.866× zα/2 and β̂1 ± 0.866× zα/2. (7)
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However, the following analysis illustrates that one need not make these assumptions. Consider new RVs
given by ẑ = M(β̂ − β) where M =

(
+0.608 +1.467
−0.879 +0.364

)
(this choice of M will be explained later) so that:

ẑ0 = +0.608(β̂0 − β0) + 1.467(β̂1 − β1) ẑ1 = −0.879(β̂0 − β0) + 0.364(β̂1 − β1).

It is easy to show that E[ẑj ] = 0 j = 0, 1 (unbiased), but now:

var(ẑ0) = 0.6082var(β̂0 − β0) + 1.4672var(β̂1 − β1) + 2× 0.608× 1.467cov(β̂0 − β0, β̂1 − β1)

var(ẑ1) = (−0.879)2var(β̂0 − β0) + 0.3642var(β̂1 − β1) + 2× (−0.879)× 0.364cov(β̂0 − β0, β̂1 − β1)

and since var(X + a) = var(X) and cov(X + a, Y + b) = cov(X,Y ) we find:

var(ẑ0) = 0.6082 × 1 + 1.4672 × 0.5 + 2× 0.608× 1.467× (−0.25) = 1

var(ẑ1) = (−0.879)2 × 1 + 0.3642 × 0.5 + 2× (−0.879)× 0.364× (−0.25) = 1

cov(ẑ0, ẑ1) = . . . = 0.

So ẑ0 and ẑ1 are independent, have zero mean and unit variance, and therefore individual CIs are given in the
usual way P (−zα/2 ≤ ẑj ≤ zα/2) = 1− α j = 0, 1. In order to obtain CIs for β0 and β1 transforming the
limits ẑj = ±zα/2 j = 0, 1 to the lines:

β̂1 − β1 =
−0.608

+1.467
(β̂0 − β0)±

zα/2

+1.467
and β̂1 − β1 =

+0.879

+0.364
(β̂0 − β0)±

zα/2

+0.364

indicates that the joint confidence region (JCR) for β0 and β1 comprises a rotated rectangle. For individual
CIs, the simplest construction would be to take the extent of the axes that lie within this JCR:

β̂0 − β0 ±
zα/2

max(|0.608|, | − 0.879|)
and β̂1 − β1 ±

zα/2

max(|1.467|, |0.364|)

which results in:

CIs: Rotated Rectangle: β̂0 ± 1.14× zα/2 and β̂1 ± 0.68× zα/2. (8)

2.1 Joint Confidence Regions

While (8) is certainly one way of constructing CIs without having to make iid assumptions, an issue is that
if P (−zα/2 ≤ Xj ≤ zα/2) = 1 − α, j = 0, 1, it is only true that P

(⋂1
j=0{−zα/2 ≤ Xj ≤ zα/2}

)
<

1 − α, and can be as small as 1 − 2α (or for p factors as little as 1 − (p + 1)α), a result known as
the Bonferroni inequality (see Law (2007)). However, if we exploit the fact ẑ02 + ẑ1

2 ∼ χ2
2, so that

P
(
ẑ0

2 + ẑ1
2 ≤ χ2

2,α

)
= 1 − α (exact, not an upper bound, and where χ2

2,α is the critical value from the
Chi-Squared distribution with 2 degrees of freedom), since ẑ = M(β̂ − β) and ẑ02 + ẑ1

2 = ẑ′ẑ, we find that
P
(

(β̂ − β)′
(
(M ′M)−1

)−1
(β̂ − β) ≤ χ2

2,α

)
= 1 − α (where M was defined after (7)). Finally, with the

eigendecompostion:

Σβ̂ = V UV ′ =

(
+0.383 −0.924
+0.924 +0.383

)(
0.396 0

0 1.104

)(
+0.383 +0.924
−0.924 +0.383

)
(9)

we see that choosing:

M = U−1/2V ′ =

(
+0.608 +1.467
−0.879 +0.364

)
→ (M ′M)−1 =

(
1 −0.25

−0.25 0.5

)
= Σβ̂ (10)

which results in:

P
(

(β̂ − β)′Σ−1
β̂

(β̂ − β) ≤ χ2
2,α

)
= 1− α. (11)

This JCR represents a rotated ellipse (the eigenvectors define the rotation and the eigenvalues define the semi-
major and minor length). In fact, for SLR we can perform the eigendecomposition analytically:

λ1,2 =
σ2
1 + σ2

2 ±
√

(σ2
1 − σ2

2)
2

+ 4σ2
12

4
~v1,2 =

(
2σ12 ±

√
(σ2

1 − σ2
2)

2
+ 4σ2

12

σ2
1 − σ2

2

)
(12)
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so that the angle of rotation associated with the new coordinate axes is given by:

θ = arctan

 σ2
1 − σ2

2

2σ12 ±
√

(σ2
1 − σ2

2)
2

+ 4σ2
12

 . (13)

We can see clearly how the three elements of variability: variance (σ2
1 + σ2

2); heteroscedasticity (σ2
1 − σ2

2);
and correlation (σ12), affect this ellipse. First, we note that only the latter two affect the angle of rotation:
and if there is no heteroscedasticity, then θ = arctan(0) = 0 (no rotation), while if there is no correlation,
then θ = arctan(1) = π/4 (45◦ rotation). For our particular example, σ2

1 = 1, σ2
2 = 2, σ12 = 0.5, we find

λ1,2 = (3 ±
√

2)/4, ~v1,2 =
(
1±
√

2,−1
)′

and θ = −22.5◦. For the individual CIs, ideally we want the
projections of this ellipse onto the (β̂0 − β0, β̂1 − β1) axes. Since this occurs when dβ1/dβ0 = 0 and∞ and
recalling that:

ẑ0 = +0.608(β̂0 − β0) + 1.467(β̂1 − β1) and ẑ1 = −0.879(β̂0 − β0) + 0.364(β̂1 − β1) (14)

we therefore have:

ẑ0
2 + ẑ1

2 = 1.143(β̂0 − β0)2 + 1.143(β̂0 − β0)(β̂1 − β1) + 2.286(β̂1 − β1)2. (15)

Implicitly differentiating ẑ02 + ẑ1
2 = χ2

2,α yields:

dβ1
dβ0

= [−2.286(β̂0 − β0) + 1.143(β̂1 − β1)][4.572(β̂1 − β1) + 1.143(β̂0 − β0)]−1 (16)

so dβ1/dβ0 = 0 when β̂0 − β0 = −0.5(β̂1 − β1) and the intercepts are β̂1 − β1 = ±
√

0.5χ2
2,α (note

0.5 = var(β̂1)). Likewise, dβ1/dβ0 = ∞ when β̂1 − β1 = −0.25(β̂0 − β0) and the intercepts become

β̂0 − β0 = ±
√
χ2
2,α (note 1 = var(β̂0)), so the individual CIs from this approach become:

CIs with no iid Assumptions: β̂0 ± 1.000×
√
χ2
2,α and β̂1 ± 0.707×

√
χ2
2,α. (17)

In summary, we see there are several possible CIs, given by (6-8, 17), depending on the assumptions made
and the construction method. The most commonly made assumes iid residuals (7), but it is the latter (17)
that is actually the preferred procedure, as it does not impose additional assumptions. It should be noted that
these examples were for ease of exposition, and in practice σ2

1 , σ
2
2 and σ12 would be estimated from sample

data, and that the Z and χ2 distributions would be replaced by the t and F distributions. Fortunately, and
as indicated by the matrix formulations of (9-11), this also generalises for multiple linear regression with p
factors, as will be outlined in Section 4.

3 MULTIPLE LINEAR REGRESSION AND VARIANCE REDUCTION

3.1 Simulation Randomness Control

For SLR the regression coefficient estimates variances (var(β̂0) = 1, var(β̂1) = 0.5) were unequal, and
examining (4) this was due to the dependency between responses at the (two) design points. There, a positive
dependency (σ12) increased the variance of the estimate of the mean (var(β̂0) = 1) while simultaneously
decreasing the variance of the estimate of the (single) factor effect (var(β̂1) = 0.5). Usually, the factor
effect(s) are of primary importance, so this result would seem fortuitous, as we would have a smaller CI than
if there were no dependency between the responses (i.e., independence). Conversely, if there was a negative
dependency (σ12 < 0), the variance of the estimate of the mean would decrease while that of the estimate
of the (single) factor effect would go up. In simulations, the dependency (or independence) and direction
(positive or negative) of the responses at the design points are determined by how randomness is implemented.
At each design point, a stream of so-called pseudo-random numbers (PRNs) must be made available so that
the stochastic elements within the simulation can be executed. To ensure (the assumption of) independence,
non-overlapping (random) PRN streams must be assigned to each of the design points.

But as we have just seen from the SLR example, independence is not necessarily a virtue, and we can do better
(in the sense of a tighter CI for the factor effect) if we could induce a positive (but not negative) correlation
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at our two design points. This can be affected by using the same PRN streams at these design points, and this
assignment is called common random numbers (CRNs). While not the focus of this paper, it should be noted
that the degree of correlation achieved depends on how synchronised the simulation runs are, where ideally
each source of random variation is given its own separately-seeded stream.

3.2 Common Random Numbers

The benefits of CRN can extend beyond SLR. For ease of exposition, let’s consider the simplest multiple linear
regression, that is with two factors x1 and x2 and the following linear regression model:

Yi = β0 + β1x1i + β2x2i + β12x1ix2i + εi(x1i, x2i) i = 1, . . . 4 ε ∼ RV(0,Σε). (18)

where Σε is the covariance matrix of the regression residuals. Fitting general linear regression with OLS, it
is well known (see Kleijnen (2015) for example) that β̂ = (X ′X)−1X ′y and the covariance matrix for β̂ is
given by:

Σβ̂ = (X ′X)−1X ′ΣεX(X ′X)−1, (19)

where X is the matrix of n design points. If X is orthogonal, then X ′X = nI and β̂ = X ′y/n with
Σβ̂ = X ′ΣεX/(n

2). For concreteness, suppose we use the following (orthogonal) design matrix, and for ease
of exposition assume homoscedasticity (equal variances at the design points), so that:

X =


+1 +1 +1 +1
+1 +1 −1 −1
+1 −1 +1 −1
+1 −1 −1 +1

 Σε = σ2


1 ρ12 ρ13 ρ14
ρ12 1 ρ23 ρ24
ρ13 ρ23 1 ρ34
ρ14 ρ24 ρ34 1

 (20)

where σ2 is the presumed constant variance and ρij is the correlation between yi = y(xi) and yj = y(xj).
For this two factor general linear regression it is not too difficult to algebraically express the diagonal entries
of Σβ̂ which are the variances of the regression coefficient estimates:

var(β̂0) =
σ2

4

(
1 +

ρ12 + ρ13 + ρ14 + ρ23 + ρ24 + ρ34
2

)
(21)

var(β̂1) =
σ2

4

(
1 +

ρ12 − ρ13 − ρ14 − ρ23 − ρ24 + ρ34
2

)
(22)

var(β̂2) =
σ2

4

(
1 +
−ρ12 + ρ13 − ρ14 − ρ23 + ρ24 − ρ34

2

)
(23)

var(β̂12) =
σ2

4

(
1 +
−ρ12 − ρ13 + ρ14 + ρ23 − ρ24 − ρ34

2

)
. (24)

Here, the situation is not as straight-forward as in SLR. There are six correlations (ρij) and they occur in the
four variances with differing signs. However, if we used CRNs at the four design points, and if we assume for
ease of illustration that the induced positive correlations each had the same magnitude (so ρij = ρ+ > 0∀i, j)
then (21-24) indicate that the variance of the estimators of the mean and factor effects are:

var(β̂0) =
σ2

4
(1 + 3ρ+), var(β̂k) =

σ2

4
(1− ρ+) k = 1, 2, var(β̂12) =

σ2

4
(1− ρ+) (25)

which would, again, be fortuitous if we were interested in the two main effects and their two-way interaction.

3.3 Antithetic Random Numbers

But suppose we were not interested in the two-way interaction, or assumed (or somehow knew) it wasn’t a
significant effect in the simulation. This is sometimes done in the early stages of simulation analyses where
there are many, potentially significant, factors and the goal is to identify, or screen, these efficiently. How
might we control the simulation randomness in our favour for this situation?

A critical observation that will assist us is that if we add the variances of the four estimators in (21-24), all
of the correlations/covariances cancel out and we are left with simply the average variance σ2 (note that this
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was also true for our SLR example). This reflects a general principle of variance invariance or an example
of the no free lunch theorem. That is, the inherent variability of the simulation is reflected (in totality) in the
variability of the estimators in linear regression models.

However, rather than seeing this as a constraint, it actually provides the motivation for the screening strategy.
We note that for our simple, general linear regression model, the use of CRNs apportioned more of the variance
σ2 onto the estimator of the mean β̂0, due to all correlations in (21) appearing with positive coefficients (and
thus less variance on the other three estimators). If, however, we are happy with sacrificing precision on
the two-way interaction (and consequently gain precision on the other three estimators-in essence, achieving
the so-called variance swindle or variance reallocation), then the strategy would require generating positive
correlations ρ14 and ρ23 and negative correlations elsewhere. To induce a negative correlation in the simulation
response between two design points, for each uniform random number in the PRN stream assigned to one
design point, we use the complement (i.e., the value 1 minus that random number) for the other design point,
thus forming a stream of antithetic random numbers (ARNs).

Now, for the simple general linear model, ρ14 > 0 if x1 and x4 share the same PRN stream (i.e., CRNs) and
ρ23 > 0 if x2 and x3 share the same PRN stream (i.e., CRNs). However, if we made both pairs (i.e., all design
points) share the same PRN stream, then we would not induce the required negative correlations. But, if we
make x1 and x4 share the same PRN stream, and x2 and x3 share the same ARN stream (this ARN stream
being the complement to the PRN stream), then we would induce both the positive and negative correlations
required. Assuming, as before, ρ+ > 0 and similarly ρ− > 0 (i.e., equal magnitudes of induced correlations)
then (21) indicate that the variance of the estimators of the mean and (main) factor effects are:

var(β̂0) =
σ2

4
(1 + ρ+ − 2ρ−), var(β̂k) =

σ2

4
(1− ρ+) k = 1, 2 (26)

where we now have greater precision in the estimator for the mean (along with the previous precision on the
main effects estimators).

In summary, we see that contrary to conventional wisdom, independence of the response variable to a designed
experiment is not necessarily a virtue, and in simulation experiments the unique ability to control randomness
provides the basis for a technique to potentially reduce the variance associated with the linear regression
estimators of factors of interest, thereby increasing their precision. The simplest general linear regression (i.e.,
with two factors) illustrated how the assignment of PRN streams (both common and antithetic) to the design
points can be made to greatest (analytical) effect. As will be outlined in the next section, this result also
generalises for multivariate linear regression with p factors.

4 MULTIPLE LINEAR REGRESSION GENERALISATIONS

The occasional use of matrix formulations in discussing SLR and the appropriate CI construction makes it
relatively easy to convince the reader that the results illustrated in Section 2 naturally carry over in the general
case of linear regression with p > 1 factors. Here, y = Xβ + ε and the OLS estimator is β̂ = (X ′X)−1X ′y.

If ẑ = M(β̂ − β) then Σẑ = ΣMβ̂−Mβ = ΣMβ̂ = MΣβ̂M
′ since Mβ is constant. With the eigendecompo-

sition Σβ̂ = V UV ′ and choosing M = U−1/2V ′ this becomes:

Σẑ = U−1/2V ′V UV ′V U−1/2 = U−1/2IUIU−1/2 = I (27)

since V is an orthogonal matrix (hence V ′ = V −1). Thus, the elements of ẑ are independent, unit-variance
distributed RVs for which it is well-know that ẑ′ẑ ∼ χ2

p+1, so that P
(
ẑ′ẑ ≤ χ2

p+1,α

)
= 1 − α. Finally,

ẑ′ẑ = (β̂ − β)′M ′M(β̂ − β) and with M = U−1/2V ′ we have:

M ′M = V U−1/2U−1/2V ′ = V U−1V ′ = ((V ′)−1UV −1)−1 = (V UV ′)−1 = Σ−1
β̂

(28)

which results in the JCR (11) for the multivariate case.

The aspect that is not so easily seen as generalising is the projection of the ellipse onto the regression coefficient
coordinate axes. For SLR, the derivative dβ1/dβ0 was used to project the ellipse tangents perpendicular to
the axes, and it was noted for the specific numerical example that these projected intercepts only depended on
var(β̂i, i = 0, 1) and not their covariance cov(β̂0, β̂1). But these results do indeed hold in the multivariate
case, thanks largely to the method of Scheffé’s F-projections as proved (either algebraically or geometrically)
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in the classic, but perhaps largely forgotten text, The Analysis of Variance by (Scheffé 1959). Thus the resultant

individual CIs are, in general, given by β̂i = ±
√
var(β̂i)χ2

p+1,α, i = 0, . . . , p, where var(β̂i) are the
diagonal entries of Σβ̂ = (X ′X)−1X ′ΣεX(X ′X)−1.

For variance reduction (or perhaps more correctly variance reallocation due to the variance invariance prin-
ciple), algebraically expanding the expressions for var(β̂i) for a given n-point design matrix (X) but general
residual covariance matrix (Σε) is particularly cumbersome. Schruben & Margolin (1978) showed that exhaus-
tive search for the simple, multiple linear regression (4 point design matrix) required examining 49 different Σε

to find the optimal assignment of CRN and ARN of Section 3. However, from that analysis they observed that
the critical consequence of that assignment was that it partitioned the design into two blocks that confounded
the interaction term of the regression model with the PRN effects. An n-point design matrix X = (1, X∗)
admits orthogonal blocking into 2 blocks if there exists an n× 2 block incidence matrix W such that 1′W is a
vector of positive integers and X ′∗W = 0. Many experimental designs, including the 2n−k fractional factorial
designs, admit orthogonal blocking. The optimal assignment rule determined by Schruben & Margolin (1978)
was to use the same stream of PRNs in one block and the corresponding ARN stream in the other block, and
the greatest benefit is had if both blocks are of the same size. For a more recent publication, see Chih (2013).

5 DISCUSSION

Construction of CIs for linear regression modelling is a key element of simulation analytics, to test the statis-
tical significance of the influential factors and to bound their magnitude. However, too often the simplifying
assumptions of iid residuals are used in statistical texts and/or software. This paper hopes to persuade the
reader that such assumptions need not be made, and by reintroducing the work of Scheffé (1959) provides the
mathematical background to procedures in the general case. In particular, the notion that independence of the
simulation response to a designed experiment is a virtue, is hopefully dispelled. Indeed, the unique ability
to control simulation’s randomness should instead be viewed as an opportunity, to increase the precision of
the linear regression CIs. The seminal work of Schruben & Margolin (1978) provides the optimal strategy of
assigning the PRN streams for this goal.

Future research will focus on two extensions. First, while factorial designs are known to be optimal for
multivariate linear regression when iid assumptions are met, the presence of heteroscedasticity has been shown
to require the search for an alternative optimal design (Atkinson & Cook 1995). Second, for simulation
responses that are not continuous (e.g., binary or count), generalised linear regression is used, and it is not
clear that the assignment strategy of Schruben & Margolin (1978) will automatically apply. I hope to share the
outcomes from this research at MODSIM 2023.

ACKNOWLEDGEMENT

The author thanks Dr Averill Law and Professor Jack Kleijnen for fruitful discussions and the two anonymous
referees for their critical reviews which improved the quality of this paper.

REFERENCES

Atkinson, A. C. & Cook, R. D. (1995), ‘D-optimum designs for heteroscedastic linear models’, Journal of the
American Statistical Association 90(429), 204–212.

Au, T. A., Hoek, P. J. & Lo, E. H. S. (2018), Combat analysis of joint force options using agent-based
simulation, in ‘2018 Military Communications and Information Systems Conference (MilCIS)’, pp. 1–7.

Chih, M. (2013), ‘A more accurate second-order polynomial metamodel using a pseudo-random number
assignment strategy’, Journal of the Operational Research Society 64(2), 198–207.

Gill, A. (2019), Two common pitfalls applying design of experiments (and hopefully how to avoid them!), in
‘Proceedings of MODSIM2019, 23rd International Conference on Modelling and Simulation’.

Kleijnen, J. (2015), Design and Analysis of Simulation Experiments, 2nd edn, Springer, New York, USA.
Law, A. (2007), Simulation Modeling and Analysis, 4th edn, McGraw-Hill, Boston, USA.
Montgomery, D. (2012), Design and Analysis of Experiments, 8th Edition, John Wiley & Sons, Incorporated.
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