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Abstract: Instance Space Analysis (ISA) is a new methodology to rigorously “stress-test” algorithms to 
gain visual insights into their strengths and weaknesses. A diverse and comprehensive set of test instances is 
used to construct a 2D visualisation of the entire space of possible test instances, within which the performance 
of algorithms and the sufficiency of the available test instances can be scrutinised. In particular, test instances 
can be scrutinised for their diversity, unbiasedness, discrimination power, and real-world-likeness. Regions in 
the instance space where an algorithm has statistical evidence of good performance are generalised to form an 
algorithm “footprint”, where machine learning methods are used to predict expected good performance on 
untested instances. The properties of algorithm footprints, including their area, density and purity, provide 
objective measures of comparative algorithm performance, rather than the traditional approach of on-average 
reporting of a performance metric over a test suite. ISA essentially unlocks the test suite to expose algorithm 
strengths and weaknesses, explaining how test instance characteristics affect algorithm performance. 

The aim of this study is to explore for the first time how ISA can provide insights into combat simulations to 
understand the impact of defence force design on combat outcomes. Specifically, the study has focused on 
exploring how force advantage and information advantage, in the form of additional joint force assets and 
extended technological capabilities, can affect improved survival ratios of force assets at the end of the combat. 
Employing ISA to explore such questions has required a novel reinterpretation of the terms “algorithm” and 
“test instance” in order to map the ISA methodology onto the combat context. The study analyses data based 
on simulation runs from the JFOrCE agent simulation tool (Au et al., 2018), which simulates a fictitious combat 
between blue and red teams. Two data sets have been generated using the JFOrCE simulation comprising: i) 
1854 force scenarios where the red and blue teams have identical initial assets with varying technological 
capabilities; and ii) 57 force scenarios where the red and blue teams have varying initial force assets with 
identical technological capabilities. An instance space is created using these datasets where “algorithm” 
success is defined as the Blue team (Experimental Force) having a better survival ratio of all assets compared 
to the Red team (Opposing Force). Analysis of the instance space reveals how the simulation parameters that 
define red and blue force attributes determine the outcomes of a simulated battle, with particular focus on those 
attributes that represent a significant force size or information advantage through technological capability.  

The results show that identical initial force data is unbiased and quite comprehensive, with clear indications of 
how key force capability attributes determine the probability of success. It is clear from the visualisations 
obtained that loss is inevitable if the opposing force has an advantage in the form of superior jet sensor range, 
when loss is defined as poorer survival ratio of assets. Likewise, a win is guaranteed if the team has a superior 
jet sensor range. There are other more nuanced conditions involving combinations of force attributes, that make 
probability of win or loss high. These include likely wins if submarine sensor ranges are higher, and if shared 
communications offer an information advantage. Exploring the varied initial force scenarios, the study was 
also able to confirm that an advantage in the number of jets can overcome disadvantage in terms of jet 
capabilities. These findings roughly support those of previous studies with related but different simulation 
datasets (Au et al., 2018). Since the datasets are fictitious, these conclusions are inconsequential.  However, 
the aim of this paper is to demonstrate the utility of the ISA methodology, by reassuring visualisations of these 
sensible relationships, and to show the potential for greater insights with additional simulation data. 
Scrutinising the diversity of the entire instance space, we show that there are simulation scenarios that could 
be explored where the combat outcomes are currently less predictable. There is also an opportunity to explore 
simulation outcomes for other parameters that define combat rules and strategies.  
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1. INTRODUCTION 

In this paper we describe a proof-of-concept study that aimed to explore the potential of Instance Space 
Analysis (ISA) to provide insights into how joint force attributes – such as force composition, size and 
technological capabilities – affect the outcomes of combat in an agent-based simulation. ISA was developed 
by Smith-Miles and co-authors in order to understand how problem instance characteristics affect algorithm 
performance, originally in the field of optimisation (Smith-Miles et al., 2014) but later generalised to many 
other fields including machine learning (Munoz et al., 2018) and forecasting (Kang et al., 2017). ISA involves 
running an <algorithm> on multiple <test instances> within a <problem domain> to generate <performance 
metrics> defining success; e.g. running a <forecasting method> on multiple <time series> within the 
<forecasting domain>, with <small errors> defining success (Kang et al., 2017). ISA reveals how properties 
of test instances (i.e. features of time series) determine success of algorithms (i.e. forecasting methods).  

In order to adopt ISA for understanding the impact of force attributes on combat outcomes we propose a novel 
mapping of the defence application that treats simulation parameters defining force attributes as a test instance, 
and the “algorithms” are combat simulations of Experimental (Blue) and Opposing (Red) forces whose 
performance is measured as the survival ratio of assets remaining at the end of the simulated combat.  In other 
words, ISA involves running a <combat simulation> on multiple <force structure scenarios> within a <combat 
setting> to generate survival ratios defining win or loss. 

The study utilises data from the Joint Future Operating Concept Explorer (JFOrCE): an agent-based simulation 
model (Au et al., 2018) that enables studies of engagements between competing forces with variations in force 
structure. The force structure is defined as a set of generic military assets such as fighter jets, submarines, air 
warfare destroyers, etc. Simulating the model leads to force engagements between the Blue and Red team 
assets, with interactions occurring via technological capabilities comprised of sensing platforms, weapons 
systems, and information sharing mechanisms. The extent of these capabilities for each competing force is 
provided by simulation parameters, along with parameters controlling the number of weapons available, and 
the probability of success (kill) when deploying a weapon. Given these parameters defining a simulation 
scenario, the model follows a set of defined engagement rules (e.g. shooting at a target when in range, or 
retreating from a threat if no weapon is available) that determine the actions of agents, with dynamic movement 
tracked via geospatial positioning, until the end of the simulation which records each force’s remaining assets.  

The purpose of the JFOrCE model is to test trade-offs in capability under the widest range of potential scenarios 
to assist with investment decision making. Two main types of capability are of interest: individual force assets 
with technological specifications (e.g. jets with certain sensor ranges), and collective sharing of information 
between force assets, e.g. via an Airborne Early Warning and Control (AEW&C) system, which is capable of 
sharing its own sensor information with other air defence capabilities, including Ground Based Air Defenders 
(GBADs) and Air Warfare Destroyers (AWDs). An information advantage is created by passing locations of 
enemy assets within the sensor range of the AEW&C onto all Blue GBADs and AWDs for target execution. 
 
In a previous study by Au et al. (2018), various scenarios were explored where Blue has a force advantage with 
more initial assets and/or an information advantage provided by the presence of AEW&C assets to share 
information. In particular, the question of whether Blue information advantage helps overcome Red force 
advantage is explored through simulations. The conclusions provided include: 
 

• Blue information advantage amplifies the tendency to win for similar force sizes; 
• Blue force advantage of more AWDs is sufficient to magnify Blue’s winning probability (more so 

than jets or GBADs) in the absence of information advantage; 
• Blue information advantage helps counterbalance Red’s force advantage with more jets or GBADs 

only; 
• Blue information advantage does not overcome Red’s force advantage with more AWDs. 

 
Based on the simulation scenarios considered, it is clear that more AWDs provides either side with a force 
advantage; information sharing via AEW&C provides either side with an information advantage; but the 
information advantage cannot overcome an opposing force advantage if the opposing side has more AWDs. 
The data employed by Au et al. (2018) generated scenarios that explored the number of such critical assets 
(AWDs and AEW&C) required for Blue success. In contrast, the data provided for our current study largely 
assumes each side has the same number of assets but has varied the technological capabilities in terms of sensor 
ranges and speeds. We can still consider force and information advantage, however, in terms of difference in 
sensor speed and sensor range capabilities of the assets. Furthermore, a small set of additional simulations are 
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conducted to vary the number of initial assets while assuming each side’s assets have similar technological 
capabilities. While the data generated by JFOrCE for this study is therefore different from Au et al. (2018), we 
aim to explore whether ISA reveals similar conclusions using its visualisation capabilities, and how ISA can 
guide the design of additional simulation scenarios that would be useful to generate additional insights. 

2. INSTANCE SPACE ANALYSIS 

In many fields that rely on algorithms, such as operations research and machine learning, there has been long-
standing criticism of how algorithms are typically tested to establish their trust and reliability (Hooker 1995; 
McGeoch, 1996). Standard academic practice in these fields typically produces a suite of test problems (from 
real-world scenarios, or randomly generated problems), and reports the performance of an algorithm on average 
across this test suite. If the performance is acceptable on average, and certainly if it is better than alternative 
approaches, a new algorithm is deemed successful since its reliability has been tested on some random, 
presumably unbiased, data. The problem with this approach is that it offers no scrutiny over whether the chosen 
test instances are truly unbiased. Furthermore, reporting performance on-average can mask risk of failure, 
offering no insight into how to avoid deployment disasters that may only be encountered for specific scenarios, 
but are lost on average if such scenarios are infrequent in the test data. If we are to trust the performance 
evaluation, we must challenge the choice of test problems, and have the means to scrutinise their properties: 
are they unbiased, diverse, challenging, discriminating, and representative of real-world scenarios? It is unusual 
for randomly generated test problems to possess these important properties. We must also move away from on 
average reporting and analyse at the per-instance level in the test set to gain insights into the conditions under 
which a model or algorithm is expected to fail or succeed. It has long been recognised as an open challenge to 
develop a more rigorous methodology to establish trust that test instances are fit for purpose, and to support a 
more “empirical science of algorithms” (Hooker, 1994). 

An alternative “stress-testing” methodology – known as Instance Space Analysis (ISA) – offers visualisations 
and analytics to support reliable decision-making and trust in algorithms. The key steps ISA are summarised 
in Figure 1, and we refer the interested reader to several key papers (Smith-Miles et al., 2014; Munoz et al., 
2018) and the online tool1 for more details. By creating a 2D instance space of test problems, including a 
mathematically defined boundary beyond which no instances can theoretically exist, ISA creates a 2D map 
which essentially “cracks open” a test suite, offering insights that are otherwise hidden by on-average analysis. 
Most critically, ISA offers: 

(i) scrutiny of the suitability of test instances – with metrics quantifying diversity, bias, discrimination, 
and real-world-likeness;  

(ii) visual insights into how test instance properties affect algorithm performance, and why; 
(iii) objective assessment of strengths and weaknesses of algorithms by measuring the area of their 

“footprint”, based on empirical evidence-based machine learning predictions; and 
(iv) guidance on the generation of useful additional test instances with controllable properties to fill within 

the mathematically defined boundary of the instance space. 
 

The ISA methodology has been tested within numerous fields of algorithmic science with well-established 
benchmark test instance repositories to support the above-mentioned claims of its advantages. In this paper 
however, we are more interested in how the ISA methodology can be effectively mapped to a completely 
different context as a first step towards gaining similar insights in the field of combat analysis. 

3. SIMULATION DATA 

Two datasets were provided for this study comprising simulation runs from JFOrCE, showing the remaining 
assets for Red  and Blue teams, under various scenarios related to asset parameters such as sensor and weapon 
ranges, and speeds, and probability of kill. For dataset 1, the number of initial assets was identical for both 
teams, but the technological capabilities were varied to provide a range of scenarios where each team has force 
and/or information sharing advantage. For dataset 2 the capabilities were fixed but the initial force size was 
varied asymmetrically. The list of available assets is provided in the Appendix (Table 1), along with the 
parameters defining a simulation scenario (Table 2). For dataset 1, a set of 92 different scenarios were 
considered that systematically vary the parameters in Table 2 within ranges. For a given parameter range 

 
1 https://matilda.unimelb.edu.au 
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defining a scenario, around 20 parameter samples2 are generated. For each sample, 200 iterations of the 
simulations are performed, due to the stochastic nature of the simulation model, and the average number of 
assets remaining for each team over these 200 trial runs are recorded. Consequently, there are average outcomes 
recorded for 1854 scenarios in dataset 1. For dataset 2, 57 scenarios were considered by varying the parameters 
in Table 2. The result is a combined set of 1922 scenarios with average assets remaining. We define the 
performance metric as the survival ratio of Blue team assets (i.e. remaining total assets per initial total assets).  

Within the ISA framework, the 
“algorithm” (simulated combat 
outcome) is deemed good if Blue’s 
survival ratio is no less than Red’s, and 
bad otherwise. The test scenarios are 
based on the values of parameters in 
Table 2, and pre-processed to generate 
features defining the advantage of 
Blue over Red in each asset or 
capabilities (e.g. adv_jets = initial blue 
jets – initial red jets). The goal of ISA 
in this combat analysis study is to 
visually explore how the force 
scenarios influence performance of 
red/blue survival ratios and combat 
outcomes, and to assess the adequacy 
of the test instances. 

4. INSTANCE SPACE ANALYSIS FOR COMBAT SIMULATION DATA 

The available meta-data comprises 1911 
instances (scenarios), described by a set 
of 21 features that capture blue advantage 
in terms of assets and capabilities, with 
good “algorithm” performance defined 
by having a superior (or not inferior) Blue 
survival ratio compared Red.  

To construct the instance space of all possible 
scenarios we used the online tool MATILDA, with 
the default parameter setting except that a maximum 
of 8 features per team were permitted in the feature 
selection stage, instead of the default limit of 3. 
MATILDA has selected 7 key features from the 21 
candidate features that best describe the performance 
difference between Blue and Red having the better 
survival ratio. The projection from the selected 7D 
feature space to a 2D instance space is given by the 
following linear transformation shown in Equation 
(1), with the coefficient matrix based on an 
optimisation algorithm (see Munoz et al., 2018) that 
aims to achieve visualisation of near-linear trends 
across the instance space in terms of algorithm 
performance metric and instance features. The 
location of each of the 1911 scenarios within the 
instance space is given in Equation (1) by their 
unique coordinates (Z1, Z2), and are shown in Figure 
2 for the two datasets. The mathematical boundary 
(shown in red in Figure 2) is defined by projecting 

 
2 Some scenarios have 19 samples, others have 35, but most have 20 samples per parameter scenario. 

 
Figure 1. Summary of ISA methodology 

(1) 

Figure 2. Location of 1854 instances (scenarios) 
with equal assets (dataset 1 in yellow), and 57 
instances with varied assets (dataset 2 in pink).  

 

Z1 

Z2 
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the hypercube vertices defined by the upper and lower bounds of each of the 7 features into the 2D space using 
the same projection matrix and connecting the vertices. The two datasets generated for this study do not fill the 
entire space of possible test scenarios, although many parts of this theoretical instance space would be unlikely 
in real-world context. Nevertheless, it is useful to assess the diversity of the chosen test scenarios, and to 
consider where additional scenarios may be useful. Clearly the equal asset dataset 1 is denser and quite limited 
in its variation, while the varied asset dataset 2 is spread sparsely across the negative diagonal of the instance 
space, with many more variations possible but not currently explored. The two datasets have different 
characteristics, but how do these characteristics affect the outcomes of the battle? 

Figure 3 shows the scenarios in which Blue has better survival ratio performance than Red. We see in Figure 
3 that scenarios falling in the bottom of dataset 1, and those at the far-right tail of the dataset 2 ensure that Blue 
wins, while the converse results in a Red win. Clearly the location of a scenario in the instance space tells us 
the likely outcome, and the location is based only on the feature values of the scenario. In order to establish if 
some features are predictive of whether Blue will have a better survival ratio or not for a given force scenario, 
we can use machine learning methods to predict the outcome for untested scenarios. Figure 4 shows the results 
of a support vector machine (SVM) that has been trained using 10-fold cross-validation to identify the predicted 
regions of win (good performance) and loss (bad performance) for the Blue team. A similar SVM has also been 
trained for predicting Red team wins. Combining these two SVMs, we have an SVM recommendation that 
achieves an 86.3% accuracy in predicting which team will have a better survival ratio given their initial assets 
and capabilities. By way of comparison, if we assume Blue wins for all scenarios, the accuracy of this naïve 
model is 47.7% for the scenarios tested in both datasets. 

Beyond machine learning prediction of combat outcomes for a given scenario, the instance space provides the 
opportunity to understand why the location of a scenario, completely determined by its feature vector, affects 
the combat outcomes. Figure 5 shows the distribution of two of the key features across the instance space, with 
blue colour indicating minimal values of the feature, and yellow indicating maximal values. Inspecting such 
feature distributions across the instance space reveals the gradients that determine win or loss are primarily 
correlated with the feature adv_jet_sensor range (Blue wins for large values in scenarios where both teams 
have identical initial assets), and the feature adv_jets (Blue wins for scenarios (in yellow) where the Blue team 
has 13 more initial jets compared to the red team). Blue having an information advantage in the form of 
AEW&C sensor range, and AWD sensor range, also supports a Blue win. For all other features, their variations 
are not predictive of outcomes, and so they have been omitted from Figure 5.  

5. DISCUSSION AND CONCLUSIONS 

This paper has described a proof-of-concept study for how a recently developed methodology known as 
Instance Space Analysis can be mapped to a combat analysis context to provide visualisations of simulation 
scenarios exploring how force design impacts combat outcomes. The power of ISA lies in its ability to tease 
apart a set of test instances, in this case simulation scenarios, to understand how comprehensively they fill the 
theoretical space of all possible instances, and to assess any bias in testing. We have seen from this study that 

Figure 3. Observed good performance of “Blue 
algorithm” with better survival ratio shown in 
blue, and worse survival ratio shown in orange 

Figure 4. Support Vector Machine prediction of 
good performance of “Blue algorithm” shown in 
blue, and worse survival ratio shown in orange 
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the available simulation scenarios, generated from two datasets that independently varied technological 
capabilities and initial force assets (but didn’t vary both types of attributes in tandem due to computational 
limitations) had limited success in filling the entire instance space. Certainly dataset 1, with initial force assets 
and varying technological capabilities is very comprehensive and densely fills the central region around the 
origin of the instance space. However, the limited available simulations in dataset 2, varying initial force assets 
with identical technological capabilities, has created a sparse line of additional instances with much unexplored 
territory between the tested scenarios. Arguably though, the tested instances represent more realistic scenarios, 
and there may be little practical value in generating more scenarios merely to comprehensively fill the instance 
space. The available datasets revealed clear relationships between how the measurable features of the scenarios, 
based in chosen simulation parameters, affect the combat outcomes. Machine learning methods were able to 
predict simulated combat outcomes with 86.3% accuracy, and the crucial role of jet sensor range advantage, 
more than any other advantage, has been revealed. 

We recommend extending the present study to examine the impact of various force structures, strategies, and 
assumptions about Opposing Force strategies when exploring the simulation capabilities offered by more recent 
tools such as Command PE and AFSIM. An ISA for simulations generated by such tools would enable a 
commander to test various courses of action, with confidence that the tested instances fill practical regions of 
the instance space, to support decision making based on “algorithms” that have been rigorously “stress-tested”. 
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APPENDIX 
 

Table 1. Assets and their initial quantities [ranges] for red and blue teams for each simulation run 

Asset name and description Dataset 1 Dataset 2 

AIM9: Short-range air-to-air missile, used by jets to shoot at other jets, using optical (IR) 
guidance system 

1 per jet 1 per jet 

AIM120: Long-range air-to-air missile, used by jets to shoot at other jets beyond visual range, 
using radar guidance system 

1 per jet 1 per jet 

AGM88: Air-to-Ground missile, used by jets to shoot at GBAD and tanks 1 per jet 1 per jet 

AEW&C: Airborne Early Warning & Control aircraft, with long-range radars, used to guide 
jets to targets (all remain) 

3 3 

AWD: Air Warfare Destroyer (ship), equipped with surface-to-arm missiles to shoot jets  5 Blue 2; Red 1 

GBAD: Ground Based Air Defence, equipped with surface-to-arm missiles to shoot jets all remain Blue 1; Red 4 

Jets: fast jets that shoot missiles at jets, AWD, GBAD, tanks 32 Blue [11,68] 
Red [10,25] 

Subs: Submarines that shoot at subs and AWD 3 0 

Tanks: Tanks that shoot at enemy tanks 10 Blue 10; Red 25 

 

Table 2. Asset parameters [ranges] defining a simulation scenario 

Capability Description Dataset 1 Dataset 2 

jet_speed speed of friendly/hostile jets used in a simulation [1200,2800] 1200 

jet_sensor_range sensor range of friendly/hostile jets used in a simulation [25,180] 150 

AEW&C_speed speed of friendly/hostile AEW&C aircraft used in a simulation [100,1600] Blue 760 
Red 700 

AEW&C_sensor_range range of sensor range of friendly/hostile AEW&C aircraft used in a 
simulation   

[150,650] 700 

GBAD_sensor_range sensor range of friendly/hostile GBAD platforms used in a simulation
  

[45,200] 100 

GBAD_weapon_range weapon range of friendly/hostile GBAD platforms used in a simulation
  

[70,225] 100 

AWD_sensor_range sensor range of friendly/hostile AWD ships used in a simulation  [50,300] Blue 95 
Red 100 

AWD_weapon_range  weapon range of friendly/hostile AWD ships used in a simulation  [95,250] 100 

subs_speed speed of friendly/hostile subs used in a simulation  [24,54] Blue 280 
Red 290 

subs_sensor_range sensor range of friendly/hostile subs used in a simulation 
  

[65,265] Blue 280 
Red 290 

subs_weapons_range  weapon range of friendly/hostile subs used in a simulation 
  

[69,270] Blue 280 
Red 290 

AIM120-PK probability of kill of AIM120 missiles used by both friendly/hostile jets [0,1] 0 

AIM120-Range range of AIM120 missiles used by both friendly/hostile jets.  [76,138] 0 

AIM9-PK  probability of kill of AIM9 missiles used by both friendly/hostile jets [0,1] 0.17 

AIM9-Range  range of AIM9 missiles used by both friendly/hostile jets [19,36] 95 

AGM88-PK  probability of kill of AGM88 missiles used by both friendly/hostile jets [0.5,1] 0.45 

AGM88-Range  range of AGM88 missiles used by both friendly/hostile jets [67,141] 85 

AWD-PK probability of kill of missiles used by both friendly/hostile AWD ships [0.5,1] 0.45 

GBAD-PK probability of kill of missiles used by both friendly/hostile GBAD systems [0.5,1] 0.4 
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