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Abstract: We aim to develop a framework for defence force design multi­objective decision­making problems 
where there are multiple decision makers each with a potentially different set of priorities, but only one solution 
is required in the end in practice.
Benabbou et al. proposed an interactive preference elicitation approach designed for problems with a single 
decision maker in the Proceedings of the AAAI Conference (2020). In this approach, a linear scalarizing 
function is used for the multiple objectives. In each iteration, a population of different scalarizing parameter 
vectors are generated and the associated single­objective optimization problems are solved one by one, each 
providing a different “optimal” solution. Following that, the search space of the scalarizing parameters is 
reduced through preference elicitation of pairwise “optimal” solutions obtained from the parameter vector 
population as each preference produces a cut to the feasible parameter set. The stopping criteria is controlled 
by the calculation of a regret value. If, in any iteration, out of all solutions found, there is a solution that returns 
the smallest maximum pairwise regret value and that the value is smaller than a predetermined tolerance, then 
the solution will be chosen as the final optimal solution.
In this paper, we propose a number of adjustments and modifications to the Benabbou et al. approach required 
for our intended application ­ Defence Force Design. We provide an insight on the impact of having multiple 
decision makers instead of just a single decision maker. It may seem counter­intuitive, but with multiple 
decision makers, we expect that the search space of the linear scalarizing function parameters converges to a 
single point much quicker if the decision makers conflict with each other in their preferences. We also propose 
a hierarchical approach to deal with high dimensional objective space as well as alternative scalarizing function 
parameter search schemes.
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1 INTRODUCTION

This paper presents a framework for solving defence force design multi­objective optimization problems with
multiple decision­makers in the loop. The intended application is complex decision making problems where
the decision makers each has a set of potentially conflicting decision criteria.
Multi­objective optimization problems (MOO) are usually solved either with a single optimal solution or a
Pareto set in mind. With the former, common approaches are to solve the MOO as a single­objective optimiza­
tion problem by using some predetermined scalarization function or Lexicographically with a predetermined
ordering of the objectives. If more than one solution is desired, then the Pareto front or a near­Pareto front can
be exhaustively or partially enumerated. But the question is, even if the optimal Pareto front can be found, how
does a Decision Maker (DM) make a decision?
In recent years, preference­based search in multi­objective combinatorial optimization (MOCO) has been pro­
posed in a number of studies, see, e.g., Kaddani et al. [2017], Benabbou and Perny [2016], Benabbou and
Perny [2015], and Benabbou and Perny [2018]. Eliciting preferences incrementally based on minimax regret
has been proposed in Boutilier et al. [2006], Benabbou and Perny [2015], and Benabbou and Perny [2018].
Recently Benabbou et al. [2020] proposed a minimax regret­based approach for solving MOCO problems that
not only incrementally elicits preferences from DMs, but at the same time, these preferences help reduces the
search space of the linear scalarizing function parameters but generating a cutting plane from each preference.
The paper focused on a single decision maker.
In this paper, we propose to use this approach to tackle the Defence Force Design problems and provide some
insights in implementation aspects, in particular, the impact on having multiple decision makers.

1.1 Multi­objective combinatorial optimization problems

Consider a set of m decision variables: x = (x1, x2, . . . , xm). The domain of each decision variable is a set
of discrete values, i.e., xj ∈ {1, . . . ,Nj} for j = 1, . . . ,m. Let χ be the set of all feasible solutions, and
y(x) = (y1(x), . . . , yn(x)) be the performance vector (i.e., the n objectives). Let fω(x) be a linear scalarizing
function, for ω = (ω1, . . . , ωn) the parameters, with ωi > 0 for each i = 1, . . . , n. Without loss of generality,
we can assume that

∑n
i=1 ωi = 1. We have that

min
x∈X

fω(y(x)) =
n∑

i=1

ωiyi(x) (1)

Let Ω = {ω | ωi > 0,∀i = 1, . . . , n,
∑n

i=1 ωi = 1} be the set of feasible parameters. With any given ω, (1) is
a single­objective optimization (SOO) problem and thus one can obtain an optimal or a near­optimal solution
by an exact method or a heuristic approach. This paper concerns the search of the parameters ω in an MOCOP
through an incremental preference elicitation process, not the solution method of a SOO problem.

1.2 A regret­based incremental preference elicitation in MOCOP

A regret­based incremental preference elicitation (RIPE) is proposed in Benabbou et al. [2020] for solvingMO­
COPs. The RIPE algorithm will incrementally reduce the feasible set of the parameters of the linear scalariza­
tion function (ω) by asking a decision­maker to compare pairs of “optimal solutions”, e.g., x̃1 and x̃2 obtained
from distinct ω1, ω2 ∈ Ω respectively, and provide a preference. If the decision­maker decides that x̃1 is better
than x̃2, for example, this gives us:

fω(y(x̃
1)) ≤ fω(y(x̃

2)) (2)

Notice that in this inequality, ω are variables and y(x̃1) are known, and therefore the inequality will provide us
with a linear constraint on ω, that is, a cutting plane on the polyhedron Ω.
Then, a pairwise regret value for x̃1 and x̃2 is calculated as:

max
ω∈Ωt

{fω(y(x̃1))− fω(y(x̃
2))} (3)

where Ωt is the set of parameter vectors ω used in iteration t. (The size of |Ωt| is predetermined by the user or
a DM).
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Now, for each optimal solution x̃ obtained in an iteration, we find the maximum regret out of the comparisons
with all other optimal solutions x̃′ ̸= x̃, and then the solution x̃∗ with the minimum maximum regret. If the
value of the this mini­max regret is smaller than a pre­determined tolerance, the solution(s) that provide the
mini­max regret value will be reported as an output, otherwise, the RIPE procedure will continue.

2 THE DEFENCE FORCE DESIGN PROBLEM

The Force Structure Plan (FSP) is the outcome of the of the force options that are explored and tested through
the Australian Capability Context Scenarios (ACCS) in the Defence Capability Assessment Program. Depart­
ment of Defence describes the ACCS as possible circumstances under which the future joint force might be
employed. The complexity of the scenario­based problems and the number of dimensions across whole­of­
force makes it almost impossible to apply detailed traditional modelling approach such as combat simulation.
Consequently, a decision support model, that traded­off fidelity for feasibility and relied on structured elic­
itation of multiple subject matter experts (SMEs) was employed (see Peacock et al. [2019]). Force Design
(FD) is ultimately about selecting a portfolio of thousands of strategic investment projects in future Australian
Defence Force (ADF) capabilities. The challenge is to optimise the combination of invested projects that give
government the overall capability it requires to achieve multiple effects (objectives) across a range of scenarios,
whilst achieving the budget constraints. To address the complex and uncertain nature of force design, Defence
Science and Technology Group are collaborating with Deakin University to develop the novel methodology
for solving multiobjective optimization problems with complex large scale whole of force. This paper aims to
extend some earlier approaches successfully used for evaluating and optimising small scale defence problems
such as the Land Combat Vehicle (LCV) system specifications and configurations for the Australian Army
(see Nguyen and Cao [2019]), to more complex problems with higher dimensions that are relevant to whole of
force design.

2.1 Past solution space search algorithms

Traditionally, the optimal defence system design solution was found by creating a single aggregate objective
function and using a weighted sum approach. This method may have some drawbacks, since it is often very
difficult to numerically quantify how important the objectives (i.e. its weighting) are relative to each other,
resulting in designs which do not really best meet the DM’s goals (seeNguyen andCao [2017]). Multi­objective
optimisation attempts to solve this problem by using the concept of Pareto optimality to find non­dominated
solutions (see Nguyen and Cao [2019]). A solution is said to be non­dominated when there is no other solution
in the space which is better with regards to all decision variables. It is not always possible to find Pareto­optimal
points, Multi­Objectives Evolutionary Algorithm (MOEA) was developed to approximate the Pareto optimal
set (see Hadka and Reed [2012]) by evolving a population of solutions to find multiple non­dominated points
as close to the Pareto­optimal front as possible, with a wide trade­off among objectives. It is heuristic based,
so may not be guaranteed in finding Pareto­optimal points. But it has essential operators to constantly improve
the evolving non­dominated points similar to the way most natural and artificial evolving systems continuously
improve their solutions. A MOEA algorithm developed by Hadka [2014] with NSGA­II algorithm option Deb
et al. [2002] had been successfully applied in our previous work (see Nguyen and Cao [2019]) for searching
the ‘best’ configuration of a small scale defence system (Land Combat Vehicle System) with four objectives:
survivability, lethality, mobility and knowledge. However, that approach is not feasible for large scale problem
such as whole of force design due to complexity and high dimension of objectives which generate very large
search space. Consequently, our aim in this paper is to develop an interactive approach with decision makers
to reduce search space for finding Pareto­optimal points in whole of force design.

3 A FRAMEWORK FOR IMPLEMENTING RIPE IN DEFENCE FORCE DESIGN

In this section, we discuss how the RIPE framework can be implemented to the Defence Force Design MCDM
described earlier as well as the adjustments and modifications required.
The initial steps are as follows. Assume that a heuristic approach is used to search the space of Ω. Let
Ω0,Ω1,Ω2, . . . be the sequence of reduced search space of Ω obtained throughout the RIPE iterations. The
method begins with the polyhedron Ω0 = {ω | (w1, . . . , wn) ∈ {0, 1}n,∀i = 1, . . . , n,

∑n
i=1 ωi = 1}. This

gives us n extreme points of the polyhedron. Each extreme point represents one of the objective functions
which has a weight of 1, and all other objective function have a weight of 0.
If a Genetic Algorithm­type approach is used to search the space of Ω, and if the population size P is chosen
to be larger than n, then P − n extra points are required, which can be chosen by randomly selecting some
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interior points in Ω, to give Ω0.
Notice one can also have the initial set of parameter vectors randomly chosen in Ω0 = {ω | (w1, . . . , wn) ∈
[0, 1]n,∀i = 1, . . . , n,

∑n
i=1 ωi = 1}.

LetΘt be the set of available preference information in Iteration t of the RIPE algorithm. We have thatΘ0 = ∅,
and we find Θ1 by performing the following steps. For each of parameter set in the initial population (of size
P ), that is, for each ω0,j ∈ Ω0, where j = 1, . . . , P , an optimal solution x∗

ω0,j ∈ χ to (1) is obtained (e.g., by
a heuristic method). This gives us the set χ0, the set of optimal solutions obtained in Iteration 0.
We then ask the decision­makers to evaluate pairs of solutions in χ0. These preferences give us the set Θ1.
With these preferences, we are able to update Ω by adding new cuts in the form of (2).
We use (a, b) to denote that solution xa is more preferable than solution xb, after the DMmakes his/her choice.
We have that:

Ω1 = {ω : ∀(a, b) ∈ Θ1, fω(y(x
a)) ≤ fω(y(x

b))} (4)

Now, we calculate a Pairwise Regret (PR) for a pair of solutions x, x′ in χ0, finding the parameters ω ∈ Ω1

that makes solution x least preferred when compared to x′ (as we assume that the MOCOP is a minimization
problem for all objectives):

PR(x, x′,Ω1) = max
ω∈Ω1

{fω(y(x))− fω(y(x
′))} (5)

Out of all PRs for solution x ∈ χ0, we find the Maximum Regret (MR):

MR(x, χ0,Ω1) = max
x′∈χ0

PR(x, x′,Ω1) (6)

Finally, we calculate the Minimax Regret (MMR) out of all the MRs calculated from all x ∈ χ0.

MMR(χ0,Ω1) = min
x∈χ0

MR(x, χ0,Ω1) (7)

The solution(s) in argminx∈χ0
MR(x, χ,Ω1) is the “preferred” solution(s) in χ0 according to the Minimax

Regret.
Then, we find new parameter sets ω in Ω1 and repeat the procedure. The procedure can be terminated when
the Minimax Regret obtained at some iteration is smaller than a predetermined tolerance δ. Suppose that this is
achieved in Iteration t, then the optimal solution(s) in argminx∈χt MR(x, χt,Ωt+1) is/are the final solution(s)
to be recommended to the decision­maker.
Figure 1 provides a flow chat for the RIPE algorithm.

3.1 Multiple Decision Makers

If χt is large and there are multiple DMs, the set of solution pairs can be distributed to different DMs so as to
speed up the comparison process. There is, however, a benefit in asking multiple DMs to assess the same pairs
of solutions.
When a decision­maker prefers solution x̃1 over x̃2, we obtain the half­space defined by (2). If, however, an­
other decision­maker prefers x̃2 over x̃1, then we have a region defined by the intersection of the two halfspace,
which is a hyperplane:

fω(y(x̃
1)) = fω(y(x̃

2)) (8)

Clearly, the larger the population P is (i.e., the more “optimal” solutions obtained in each iteration χt), the
more decision makers are involved, and more importantly, if the decision makers have very different criteria
in mind, the more likely Ωt can be significantly reduced.
In fact, as soon as we have n sets of conflicting preferences, and the resulting hyperplanes are linearly inde­
pendent, Ω will converge to a unique solution.
An interesting computational experiment would be to see which of the following occurs first: a unique set
of ω is found, or the mini­max regret falls below the predetermined tolerance value. As they both serve as a
stopping criteria, it would be interesting to see, in practice, which one occurs first for the intended application.
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Figure 1. A flow chat for the RIPE algorithm.

3.2 Updating Ωt

There are a number of approaches for updating Ωt.

1. In Benabbou et al. [2020], given two parameter vectors used in iteration t, ωt,1, ωt,2 ∈ Ωt, a new
parameter vector in iteration t + 1 can be obtained by ω = λω1 + (1 − λ)ω2, for λ ∈ (0, 1). The
calculation is fast and straight forward, however the points ω1 and ω2 must be in the intersection of the
feasible set Ωt and the new cuts (2) generated.

2. In any iteration t, with Ωt, one can obtain a set of parameter vectors ωt,1, . . . , ωt,P by randomly gener­
ating P points in Ωt using, for example, the method described in Meister and Clauss [2020].

3. In iteration t + 1, obtain P new parameter vectors from the P parameter vectors obtained in iteration
t by performing a neighbourhood search. A new point ωt+1,j , j = 1, . . . , P can be randomly selected
from the intersection of a ball of diameter r centered at Point ωt,j and the new cuts generated in iteration
t.

3.3 Repetitions and mini­mini­max regret

With multiple decision­makers, as the procedure is expected to finish much quicker if the decision­makers
have conflicting objectives, with the time saved, the procedure can be repeated many times, each time with
a different initial parameter set Ω0. On the other hand, instead of using a tolerance, a predetermined number
should be used as a fixed maximum number of iterations to be carried out in each repeat. Finally, out of all
repeats, the solution with the minimum MMR should be used as the final solution.
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3.4 Hierarchical implementation

In Defence Force Design, there are primary operational effects (objectives) categories: Land Control, Air 
Control, Sea Control, Strike etc. Under each of these primary objectives, there are a number of secondary 
operational effects (objectives) categories: Force Projection and Lift, Sustain the Force, etc. (see Peacock 
et al. [2019]). One potential approach is to implement RIPE in two phases. In Phase 1, only the primary 
objectives are used in the RIPE procedures, until the optimal weights ω′

1, ω′
2, ω′

3, . . . are found. Then in Phase 
2, all secondary objectives are brought in, with the search space of Ω further constrained by, e.g., the sum of 
the parameters in the first category must be equal to ω′

1 and so on.

4 Conclusions and future work

In this paper, we presented a framework for Defence Force Design multi­objective decision­making involving 
multiple decision makers. We proposed some modifications to the Benabbou et al. [2020] method of regret­
based incremental preference elicitation. We provided an insight on the impact of having multiple decision 
makers instead of one decision maker which was originally designed in the Benabbou et al. paper. With 
multiple decision makers, the search space of the linear scalarizing function parameters in fact converges to 
a single point much quicker if there are conflicts in terms of preferences among the decision makers. We 
also proposed a hierarchical approach to deal with very high dimension of the objective space, and proposed 
alternative approaches to search through the space of scalarizing function parameters. We provide an example 
in the Appendix, and leave the intended real­life implementation and the tuning of the approach for future 
research.
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APPENDIX
Suppose we have six decision variables xj , for j = 1, . . . , 6, each with a domain of {−1, 0, 1}, and three
objective functions y1(x) = x1+2x2+2x3+x4+3x5+x6, y2(x) = 2x1+4x2+x3+3x4+x6, and y3(x) =
3x1 + x2 + 2x3 + 4x5 + 5x6. We use a linear scalarizing function max z = ω1y1(x) + ω2y2(x) + ω3y3(x).
The outcomes from Iteration 0, where four sets of initial scalarizing parameters were used, are presented in the
table below. The initial feasible set of the scalarizing parameters isΩ0 = {ω1, ω2, ω2 ≥ 0, ω1+ω2+ω3 = 1}.
After these evaluations in Iteration 0, suppose that a DM, (DM­A), prefers Solution (x∗)0,1 over (x∗)0,2, we

Iteration 0, Ω0

ω0,1 ω0,2 ω0,3 ω0,4

ω0,·
1 1 0 0 0.4

ω0,·
2 0 1 0 0.3

ω0,·
3 0 0 1 0.3

(x∗)0,1 (x∗)0,2 (x∗)0,3 (x∗)0,4

x1 0 ­1 1 1
x2 1 1 0 1
x3 0 ­1 0 1
x4 0 1 ­1 ­1
x5 1 ­1 1 0
x6 0 1 1 1

fω0,·(y1(x)) 5 ­2 4 5
fω0,·(y2(x)) 4 5 0 5
fω0,·(y3(x)) 5 ­3 12 11

Table 1: An example

have that the following cut: 5ω1 + 4ω2 + 5ω3 ≥ −2ω1 + 5ω2 +−3ω3. Hence,

Ω1 = {ω1, ω2, ω2 ≥ 0, ω1 + ω2 + ω3 = 1, 7ω1 − ω2 + 8ω3 ≥ 0}

There may be other preferences from DM­A which will generate more cuts. If, however, there is another DM,
(DM­B), whose preference is the opposite, the cut will be 7ω1 −ω2 +8ω3 ≤ 0, The contradicting preferences
will give us the equation 7ω1−ω2+8ω3 = 0 and as soon as we have a third equation that is linearly independent
to ω1 + ω2 + ω3 = 1 and 7ω1 − ω2 + 8ω3 = 0, we will have a unique solution for ω1, ω2, ω3. Then, one
can solve a SOO with these parameter values to obtain the optimal values of the original decision variables
x1, . . . , x6.
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