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Abstract: Generative Adversarial Neural nets (GANs), developed by Goodfellow et. al (2014) are a 

branch of machine learning techniques that are one of the newest and most important fields in machine 

learning. They have several singular characteristics. A GAN, when applied to a data set, learns to generate 

new data with the same statistics as the training set. This paper examines the characteristics of the time series 

of financial data developed when a GAN is trained on a sample financial data set comprising daily S&P500 

Index values. GANs were originally proposed as a form of generative model for unsupervised learning, but 

their application and use have developed on several fronts into semi-supervised, supervised and 

reinforcement learning as well. GANs involve the application of two competing neural networks in a game 

theoretic context. The Generator net tries to generate pseudo data that is presented to the discriminator net 

which then attempts to distinguish between the real and the fake data. The process proceeds dynamically, and 

non-specifically, in that that the generator is not trained to minimize the distance to a specific image of the 

dataset, but rather to fool the discriminator. This enables the model to learn in an unsupervised manner. A 

known dataset serves as the initial training data for the discriminator. The generative network generates data 

sets while the discriminative network evaluates them. The generative network's training objective is to 

increase the error rate of the discriminative network. The customary procedure is to seed the  generator with a 

randomized input that is sampled from a predefined latent space, such as a normal distribution. Then 

backpropagation procedures are independently applied to both networks so that the generator learns to 

produce more convincing samples whilst the discriminator becomes more adept at screening pseudo samples. 

The game reaches an equilibrium when the generator can fool the discriminator half the time. Potential  

convergence difficulties lead to the development of Wasserstein GANs Arjovski et al. (2017). We apply 

Wasser GANs in this paper and examine the characteristics of the generated fake S&P500 data set. Typically, 

financial data sets have long memory and fat tails. Prices series are non-stationary with variances that 

increase as a function of time. Fama (1965), in his development of efficient market tests, suggested that 

markets should have no memory, therefore the autocorrelation of return series should be approximately zero. 

We explore whether the generated series possess these characteristics. A related issue is how closely does the 

fake series mimic the real series? We explore this issue using cointegration tests on the levels of the series 

and regression analysis of the logarithmic first differences, or returns of the series. The results suggest that 

many of the characteristics of real financial series are captured in the artificial series generated by GANs.  
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1. INTRODUCTION

Generative Adversarial Neural Networks (GANs), as developed by Goodfellow et al. (2014) can be viewed 

as a modified version of the Turing test, first proposed by Alan Turing, the father of modern computing, in 

1950. Turing suggested a test of a machine's ability to exhibit intelligent behaviour equivalent to, or 

indistinguishable from, that of a human. Turing proposed that a human evaluator would judge natural 

language conversations between a human and a machine designed to generate human-like responses, via a 

keyboard,  from a machine in the next room. If the participant could not distinguish human responses from 

those of a machine, the machine would have passed the test.  

GANs consist of two different neural networks, a generator G and a discriminator D. The generator G is 

responsible for the generation of data, and the discriminator D functions to judge the quality of the generated 

data and provide feedback to the generator G. These neural networks are optimized under game-theoretic 

conditions: the generator G is optimized to generate data that deceive the discriminator D and the 

discriminator D is optimized to distinguish the source of the input, namely the generator G or realistic 

dataset. Below, we provide brief descriptions of some of the main forms of Financial time series GANS 

models. Unlike other time series models, GANs are maximum likelihood free. We do not necessarily 

implement such techniques when training GANs.  

GANs are an example of generative models, the term can be used to refer to any model that takes a training 

set, consisting of samples drawn from a distribution pdata, and learns to represent an estimate of that 

distribution somehow. The result is a probability distribution pmodel. This might be estimated explicitly, or 

samples drawn from its distribution might be generated.  

This might seem redundant but it can inform and improve our ability to represent and manipulate high 

dimensional probability distributions.. Generative models of time series data can be used to simulate possible 

future scenarios. GANs can be used to improve image resolution, create art and be used for image translation. 

Figure 1. GAN Architecture 
*GAN Architecture: The figure depicts all the states and output including the connections between all the networks that 
makes up a full GAN network. Firstly, the generator network takes in the random input, before passed on to the 
discriminator network, On the other hand, the real input is passed directly to the discriminator function. The 
discriminator then classifies the output as either real or fake. This comes with loss functions for each classification, as we 
shall further discuss.

GANs have the advantage of using latent code, no Markov chains are required, and they are often regarded as 
producing the best samples, Goodfellow (2016).  

Generator network x = G(z;Ө(G)) 

Where the function must be differentiable, have no invertibility requirement, be trainable for any 
size of z, x can be made conditionally Gaussian, given z, but there is no requirement to do this.  
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What is the solution to D(x)in terms of pdata and pgenerator? Assume both densities are non-sero everywhere. 

Solve for where the functional derivatives are zero.  

The sample and method is discussed in section 2, the results in section 3 and the paper concludes in section 4. 

Source: Goodfellow (2016) 

                                                                                     Source: Goodfellow (2016) 

2. Sample and method

We downloaded daily data for the S&P 500 index for a period from 3/1/2012 to 22/12/2022. This gave a total 

of 2063 daily observations. We used used the Python Pytorch library to fit the GANs analysis. The process of 

Figure 2. GAN 

Figure 3. GAN 
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fitting the model generated a fake 500 index data set. We use Wasser GANs in this paper to generate the 

series, see Arjovsky, et al. (2017). The purpose of the current paper is to explore how closely the fake S&P 

500 index series mimics the real series.  

We did this by contrasting the two series using descriptive statistics. We created a return series for both by 

taking the logarithm of first differences. We then analysed both of the series by checking the stationarity of 

both series, and estimated the Hurst Index. We fitted GARCH models to the return series, estimated their 

periodograms and ran simple tests of market efficiency.  

3. RESULTS

Table 1 presents descriptive statistics for both the fake and real series. On all metrics the real and the fake 

series in both levels and log differences are remarkably similar. The mean and median of the two series are 

very similar. Their standard deviations, skewness and excess kurtosis are also similar. KPSS unit root tests 

with trend on both series reject the null of non-stationarity. Their Hurst exponents are almost the same at 1.02 

and1.01. This value suggests that both series have long term positive autocorrelation or long memory.  

Table 1. Descriptive statistics for Real and Fake S&P500 series 

Real S&P500 Prices Fake S&P500 Prices 

Mean 1598.5 1568.5 

Median 1471.5 1480.0 

Minimum 676.53 491.25 

Maximum 2690.2 2624.4 

St. Deviation 459.78 491.60 

Ex. Kurtosis -0.89893 -0.99214

Skewness 0.31735 0.097534 

KPSS test with trend 4.29702*** 3.74915*** 

Hurst exponent 1.01981 1.01209 

Log difference Real 

S&P500 prices 

Log difference Fake 

S&P500 prices 

Mean 0.00023073 0.00022175 

Median 0.00059556 0.00056296 

Minimum -0.094695 -0.11871

Maximum 0.10957 0.11413 

St. Deviation 0.012664 0.014761 

Ex. Kurtosis 10.901 12.234 

Skewness -0.34878 -0.0068651

KPSS test with trend 0.0700386 0.0531918 

Hurst exponent 0.548056 0.539908 

Note: *** Indicates significance at 1% level. 

Plots of the levels of the two series are shown in Figure 4. They follow each other’s path very closely. 

We also took the logarithmic first differences of the two series to produce a real and a fake S&P500 return 

series. Descriptive characteristics for the two series are shown in the bottom half of Table 1. Once again in 

terms of their means, medians, minimums, maximums, standard deviation and excess kurtosis, they are very 

similar. There is less negative skewness on the fake series. KPSS unit root tests with a trend suggest that both 
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log return series are stationary. The Hurst exponent for both series is now 0.55 and 0.54 respectively, which 

suggests that any autocorrelations decay rapidly.  

A GARCH (1,1) model, see Bollerslev (1986), was estimated for both the real and fake series. The model 

failed to converge for the fake series so an ARCH (1) model, Engle (1982), was estimated instead. The 

results are shown in Table 2. Plots of the conditional variances for the above models described in Table 2 are 

shown in Figure 5.  

There is evidence of slightly different behaviour in the lag structure of autocorrelations in the two return 

series. Figure 6 provides graphs of the periodograms of the two series.  A periodogram is an estimate of 

the spectral density of a signal. The term was coined by Arthur Schuster in 1898. There is relatively more 

dependence in the fake series that then diminishes rapidly in comparison to the real series.  

The relationship between the levels and of the Real S&P 500 and Fake S&P 500 series was examined using 

an Engle-Granger (1987) bivariate cointegration test. The results in Table 3 show the slope coefficient is 

close to 1 and significant at the 1 per cent level. The unit root test on the residuals of this regression rejects 

the null of non-stationarity at the 1 per cent level.  

The relationship between the lag structure of the two return series was examined by running a simple test of 

market efficiency, see Fama (1965), of regressing the current return for both series on one lag of itself. The 

results are shown in Table 3 and are quite striking. The real series exhibit behaviour that is consistent with 

weak-form market efficiency. The slope coefficient is negative and significant, but the Adjusted R square 

suggests that the relationship only explains 1% of the variation in real returns on the S&P 500 Index.  

The slope coefficient for the fake S&P 500 return series is also significant and large with a value of 0.47, and 

the regression has an Adjusted R Square of 22 per cent. This is not consistent with the existence of weak 

form market efficiency.  
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Table 2. GARCH(1,1) and ARCH(1) models fitted to Real and Fake S&P 500 return series. 

Coefficient Real S&P500 returns Fake S&P500 

Constant 0.000615600*** n.a.

Alpha(0) 2.27786e-06*** 7.71906e-05*** 

Alpha(1) 0.119790*** 0.761106*** 

Beta(1) 0.862700*** n.a.

Note: *** Indicates significance at 1% level. 

Figure 4. Plots of Real S&P500 and Fake S&P500 
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Table 3. Engle-Granger Cointegration test 

Slope coefficient Fake Series Adjusted R Squared 

Real S&P500 series 0.930453*** 0.989720 

Note: *** Indicates significance at 1% level. 

Table 4. Test of weak-form efficiency 

Slope coefficient Adjusted R Squared 

Real S&P500 return series −0.104274*** 0.010515 

Fake S&P 500 return series 0.467936*** 0.218690 

Note: *** Indicates significance at 1% level. 
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4. DISCUSSION AND CONCLUSION

The paper examines the use of GANs to generate a fake S&P500 Index series which in levels is 

indistinguishable from and cointegrated with the real series. It is only when the series is transformed into 

returns that higher-order lags of the two series behave differently. This is apparent from fitting GARCH 

models, periodograms, and simple tests of weak form market efficiency. These tests reveal differences in the 

behaviour of the two series at the higher order lags.  

Figure 5. Plots of conditional variances 
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Goodfellow (2016) notes that there no single compelling ways to evaluate a generative model. Models with 

good likelihood can produce bad samples, samples themselves are hard to evaluate, and good samples can 

have bad likelihood. Hence the multiple metrics used in evaluation in this paper. 
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