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Abstract: Gully erosion is the major source of sediment across the Great Barrier Reef Catchment 
Area (GBRCA) contributing an estimated 54% of the total sediment generated from landscape processes. It 
would stand to reason therefore that any effort to reduce the load of sediment delivered from the 
GBRCA to the receiving waters of the Great Barrier Reef would focus on the remediation of gully erosion 
to some extent. To this end, the Australian and Queensland Governments are directing significant 
investment on projects aimed at reducing gully erosion.
Mathematical gully erosion models can be useful for predicting the behaviour and evolution of gully 
initiation and growth to provide estimates of sediment export to the wider environment. Models can 
also be used to investigate various gully rehabilitation scenarios to quantify the potential mitigatory 
impacts of proposed projects and to help optimise their outcomes. MERGE (Modelling Erosion Resistance 
for Gully Erosion) is one such model that can quantify sediment loads resulting from gully erosion 
processes. MERGE is process-based and can be used to model the impacts of actions taken to rehabilitate 
gullies and reduce erosion to inform decisions related to gully remediation projects to protect coastal 
ecosystems.
To gain some insight into the behaviour MERGE we conduct global sensitivity analyses on a range of 
model gully scenarios with distinctive characteristics. Sensitivity assessment has become a standard 
procedure for exploring the factors influencing model output quantities of interest. The credibility and 
utility of MERGE depends on knowledge of how important each variable (parameter and model input) 
is. The objective of sensitivity analysis is to quantify the incremental change in model response to 
incremental change in model variables.
We find that the relative sensitivity of MERGE model parameters can vary significantly between different 
sce-narios. A practical consideration arises from observing how the hierarchy of parameter influence on 
model response changes depending on the scenario. For example the more important variables may 
need refine-ment, and identifying those with little influence on model outputs may lead to model structure 
improvements and possibly simplifications. Furthermore, improved understanding of which gully process 
dominate the gen-eration and transport of sediment may assist in designing engineering solutions for 
limiting erosion in the environment.
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1 INTRODUCTION

Gully erosion is understood to be a significant source of sediment being discharged from the landscape into the
receiving waters of the Great Barrier Reef lagoon. Although most gully erosion is localised within parts of the
Burdekin and Fitzroy catchments it is responsible for an estimated 40% of sediment entering the waterways
of the GBR catchments (McCloskey et al. 2021). The MERGE gully erosion model was developed to support
gully remediation activities to achieve sediment reduction targets for the Great Barrier Reef. The sensitivity
analysis of MERGE model parameters is an important preparatory step to support use of the model to guide
decision making by land managers.

It has been noted elsewhere that sensitivity analysis should be conducted on gully models to inform their use
(Roberts et al. 2022). In this paper we use the method of Sobol (Sobol 2001) to survey the behaviour of
the MERGE model in terms of the sensitivity of the calculated rate of sediment discharge to different gully
conditions as represented by different model parameter configurations.

Sobol sensitivity analysis is a powerful and widely used technique for understanding the sensitivity of model
outputs to variations in input parameters. It is a variance-based method that is designed to measure the contri-
butions of individual input parameters and their interactions to the overall variance of the output. The method
was first introduced by Sobol in 1993 (Sobol 1993) and has since become a standard tool for sensitivity analysis
in many fields, including engineering, finance, and environmental science.

The basic idea behind Sobol sensitivity analysis is to decompose the total variance of the model output into
contributions from each input parameter and their interactions. This decomposition provides a quantitative
measure of the sensitivity of the model output to each input parameter, and it can be used to rank the importance
of the inputs and identify the most influential ones. The method is particularly useful when dealing with high-
dimensional models that have a large number of input parameters, as it allows for the efficient exploration of
the parameter space.

Sobol sensitivity analysis has several advantages over other sensitivity analysis methods. For one, it can handle
non-linear and non-monotonic relationships between inputs and outputs, as well as interactions between inputs.
Additionally, it can provide a measure of the total variance of the model output, which can be useful for
uncertainty quantification and risk assessment.

2 METHODS

2.1 MERGE

MERGE is a one-dimensional conservation of mass model for the erosion of channel-like gullies (Figure 1).
Sediment is advected through the gully subject to deposition (sink) and entrainment (source) processes, which
are themselves functions of the sediment concentration C [kg/m3]. MERGE incorporates a depositional layer
and the concept of re-entrainment, where recently deposited sediment is easier to entrain than the original soil
matrix. A depositional layer will form if the rate of entrainment is less than the rate of deposition, which is
typically observed when there is a high concentration of sediment within the water column due to up-gully
conditions, but a low power environment. For convenience, the gully is divided into two sections, the gully
head, which is a higher power environment due to the waterfall and within which a depositional layer cannot
form; and the gully channel, which is a lower power environment.

MERGE assumes a homogeneous gully, with constant soil properties (soil cohesion J [Ws/kg]), density σ
[kg/m3], and particle radius R [m]) and constant channel properties (head length Lw [m], total length L [m],

Figure 1. Examples of linear gullies within the GBR catchments. Images © 1– R Thwaites; 2 & 3 –A Brooks
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Figure 2. Geometry of the ideal gully. The sediment concentration C(x, t) [kg/m3] satisfies the conservation
of mass equation, which is to be solved within the bounded domain x ∈ [0, L], split into two regions for
convenience. Region I encompasses the gully waterfall [0, Lw), while Region II the gully channel [Lw, L].
The gully is of constant slope S. The flow within the gully is of constant flux Q with depth d [m], and width
W [m]. Sediment is entrained from the walls and floor at rate ηe [kg/m s] and re-entrained at rate ηr [kg/m
s]. Sediment is deposited out at rate δ [kg/m s] potentially forming a depositional layer (shown in red). Figure
adapted from Roberts (2019).

width W [m], slope S, and channel roughness n [s/m1/3]) (Figure 2). Under the assumption of a constant
flow, Q, through the gully, and hence a constant flow depth d, quasi-steady state solutions exist. The quasi-
steady state solutions provide a steady concentration profile within the gully, however the dynamics of any
depositional layer, if present, will not be steady. For a complete description of the model, refer to Roberts
(2020).

The sensitivity analysis is conducted over five different gully and flow configurations (see Table 1). The
scenarios are motivated by previous gully studies with modifications to sample uncertainty across a broader
range of gully erosion conditions. Scenarios 1 and 2 are motivated by the Bremer gully reported in Rose
et al. (2014), with Scenario 1 modified for smaller particle sizes and density, and Scenario 2 considering a
lower soil cohesion and channel roughness. Scenario 3 is considers the gully reported in Prentice et al. (2021),
while Scenario 4 considers the first section of the gully reported in Roberts (2022). Scenario 5 examines the
conditions from the first section of the Riverside North Gully reported in Prentice et al. (n.d.).

2.2 Random Sampling High Dimensional Model Representation

Consider x=(x1, x2, · · · , xn), which can represent the parameters of a function, or model, with some response
f (x). The parameters x take values in the unit hypercube [0, 1]n after being rescaled from their original
values. The ANOVA-HDMR (analysis of variance - high dimensional model representation) of f (x) expands
the function into the sum of component functions in the following form

f (x) = f0 =
n∑

i=1

fi (xi) +
∑

1≤i≤j≤n

fij (xi, xj) + · · ·+ f12···n (x1, x2, · · · , x2) . (1)

The partial variances attributed to each variable and combination of variables can be evaluated by calculating
the variance of their respective component functions over [0,1]. In order to symbolically derive the ANOVA-
HDMR and variances, the function f (x) must be square integrable. If this is not the case, for example when
f (x) is the response of a black box model, numerical Monte Carlo integration can substitute for analytic
integration. This brute-force approach can require a large number of function evaluations, which can be prob-
lematic in the presence of an expensive model. The random sampling HDMR (RS-HDMR) is a more efficient
alternative to the ANOVA-HDMR that proceeds by expanding the function variables into an orthonormal basis
and approximating the HDMR component functions as a sum of orthonormal polynomial basis functions as

81



Bennett et al., Parameter sensitivity analysis of MERGE

follows:

fi (xi) ≈
k∑

r=1

αi
rφr (xi) (2)

fij (xi, xj) ≈
l∑

p=1

l′∑
q=1

βij
pqφp (xi)φq (xj) (3)

where k, l and l’ are the maximum orthonormal polynomial orders while αi
r and βij

pq are constant coefficients
that can be determined by regression analysis. Eqs (2) and (3) show the RS-HDMR terms up to a second
order expansion, which is usually sufficient in most cases to capture the most dominant terms in the sensitivity
analysis. The decomposition coefficients can then be used to estimate the partial variances for the first order
terms

Di =
k∑

r=1

(
αi
r

)2
(4)

and second order terms

Dij =
l∑

p=1

l′∑
q=1

(
βij
pq

)2
(5)

and finally, the first order Sobol indices can be calculated

Si =
Di

D
(6)

and second order indices

Sij =
Dij

D
(7)

where D is the total variance of the response represented by f (x).

2.3 RS-HDMR implementation

To investigate the evolution of parameter sensitivities as a function of varying gully characteristics, 5 different
parameter configurations were constructed as outlined in Table 1. 11 model parameters were considered for
each configuration, namely gully width W , head length Lh, head depth D0, slope S, Manning’s roughness
coefficient n, flow depth d, particle radius R, soil density σ, soil cohesion J , carrying capacity C∗, and
power proportion k, which defines the proportion of power (stream and waterfall) available to erode the floor
and walls. The volumetric flux through the gully Q is related to the flow depth, gully slope, and width using
Manning’s Equation. The settling velocity of the sediment is modelled using Stoke’s Equation and is a function
of the particle size and density. The sediment yield is measured at the distance L = 100 m from the start of
the gully. All other parameters are held constant. Latin hypercube sampling (LHS) (Deutsch & Deutsch
2012, Moza 2020) was used to generate 1000 uniformly distributed parameter sets centred at the values in
Table 1 with ranges extending ±30% from the mean for each scenario. The MERGE model was run for each
parameter set to generate the steady state sediment discharge rate response variable. Infeasible parameter
combinations were discarded. Once the Latin hypercube is scaled to the unit hypercube, the scaled parameters
can be expanded into a shifted Legendre polynomial basis. The nth shifted Legendre polynomial can be found
using a variation of Rodrigues formula (Horner 1965):

φn (x) =

√
2n+ 1

n!

dn

dxn
(
x2 − x

)n
(8)

and they obey the orthonormality condition,∫ 1

0

φn (x)φm (x) = δmn. (9)
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Table 1. MERGE model parameter values and sensitivity indices (Si) for the five gully scenarios. Model
sensitivities are based on uniform LHS sampling centred at Value as described in the text. Only indices >0.01
are explicitly provided. Second order indices follow the first order indices in the table. For reference, the mean
and standard deviation of the model response for each scenario is given in the final row.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Parameter Value Si Value Si Value Si Value Si Value Si

W 2 <0.01 2 0.01 5.5 <0.01 2.4 0.09 1.25 <0.01
Lh 20 <0.01 20 <0.01 1 <0.01 3.1 0.10 1.5 <0.01
D0 3 0.21 2.2 <0.01 2 0.25 2 <0.01 0.4 <0.01
S 0.01 0.02 0.02 0.11 0.012 <0.01 0.025 <0.01 0.055 0.29
d 1.5 <0.01 0.5 0.01 0.584 <0.01 1.3 0.39 0.34 <0.01
n 0.2 <0.01 0.04 0.05 0.027 <0.01 0.045 0.01 0.027 <0.01
k 0.2 0.37 0.2 0.03 0.2 0.32 0.005 <0.01 0.01 0.32
C∗ 472 <0.01 472 0.23 266 <0.01 147 <0.01 133 <0.01
R 16µm <0.01 65µm 0.20 16µm <0.01 10µm 0.40 16µm <0.01
σ 1330 <0.01 2320 0.32 1330 <0.01 1470 0.01 1330 <0.01
J 400 0.40 5 <0.01 100 0.35 1700 <0.01 146 0.35

J , k 0.01 <0.01 <0.01 <0.01 0.01
C∗, σ <0.01 0.01 <0.01 <0.01 <0.01

Mean yield
(SD) [kg/s] 19.7 (5.4) 301.4 (80.4) 69.1 (16.3) 0.07 (0.02) 5.8 (1.7)

The coefficients, αi
r and βij

pq can now be found by regression analysis of Eq. 10.

f (x1, · · · , xM ) ≈ c0 +
M∑
i=1

k∑
r=1

αi
rφr (xi) +

M∑
1≤i≤j≤M

l∑
p=1

l′∑
q=1

βij
pqφp (xi)φq (xj) (10)

For this analysis, k = l = l′ = 10 was used for the basis set expansion. When M = 11 a total possible 6105
coefficients are included in Eq. 10. To limit the number of coefficients in the fitting procedure a Group Method
of Data Handling (GMDH) polynomial neural network regression model (Ivakhnenko 1971) is initially con-
structed using the primitive Legendre polynomial basis set in a similar way to that outlined in Lambert et al.
(2016) and Bennett & Fentie (2017) . Terms selected in the best performing neuron in the GMDH network are
then selected and the remaining primitive basis set variables are discarded. The filtered basis set that survives
the GMDH filtering step are then combined to form all possible first and second order product terms to form
a pruned version of Eq. 10. The related subset of coefficients can then be found through a more manageable
analysis using automatic relevance determination (ARD) regression (Rudy & Sapsis 2021). This compos-
ite GMDH/ARD procedure can yield a sparse RS-HDMR, which can be thought of as a type of polynomial
chaos expansion (Blatman & Sudret 2010). The method described in this section is implemented in a Python
package, RSHDMRPy, which can be made available on request.

3 RESULTS AND DISCUSSION

Table 1 provides the results of the sensitivity analysis for each of the 11 parameters across the five scenarios
investigated. Across all scenarios 4 of the 11 parameters accounted for at least 30% of the observed variation
in at least one of the scenarios, with an additional 3 parameters accounting for at least 20% of the observed
variation. Second order indices account for at most 1% of the total model variance so can generally be regarded
as non-influential for our purposes. The relative sensitivity of the parameters was not consistent between the
different scenarios, suggesting that uncertainty in specific parameters will have greater importance in some
cases than others.

Scenarios 1 and 3 had the same dominant parameters: the soil cohesion J , power proportion k, and waterfall
height D0. In these scenarios the model is most sensitive to the parameters driving the rate of entrainment in the
gully head, which is the region of highest entrainment in most systems. Entrainment in the gully head drives
headcut retreat, the rapid lateral expansion of a gully up the catchment. Entrainment is a balance between the
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soil’s resistance to erosion, where soil cohesion is a critical parameter, and the power that is available to entrain.
Within the gully head power from the waterfall is typically much greater than that from the streamflow. The
waterfall power is driven by the height through which the water falls over the head, D0−d, and the volumetric
flux of the water, Q (captured in this analysis by d since flux is related to depth by Manning’s Equation). The
waterfall height D0 is measured in the field, however some natural variation throughout the head region is
expected. The power proportion k < 1 is a multiplicative factor that restricts the amount of power from the
flow that is available for erosion – the value of k is unknown. Roberts (2020) assumed that k was constant
across systems, however more recent studies suggest that this may not be the case.

Scenario 5 yielded similar sensitivities to Scenarios 1 and 3, however the slope S accounted for 29% of the
observed variability, whereas the waterfall depth accounted for < 1%. In this scenario, the waterfall depth was
small D0 = 0.4 with a flow depth of d = 0.34, while the channel is steep S = 0.055. In this scenario stream
power exceeds waterfall power leading to the model being more sensitive to the driver of stream power (slope)
balanced against the power proportion k and soil cohesion J .

Scenarios 2 and 4 exhibited different patterns of sensitivity to 1, 3 and 5. Variation in Scenario 4 is dominated
by the particle size (40%) and the flow depth (39%). Scenario 2 is the highest yielding with a mean sediment
yield of 301.4 kg/s, with the next closest being Scenario 3 at 69.1 kg/s. The variation in the sediment yield
is mostly explained by the soil properties of density (32%) and particle size (20%), and the carrying capacity
(23%). This scenario considered a large, heavy soil (R = 65µm, σ = 2320) with low cohesion (J = 5).
Therefore, deposition is likely an important process in this scenario, and thus variation in the settling velocity,
which is a function of the density and particle size, is likely driving this uncertainty/variation.

In most scenarios the carrying capacity has a limited effect on the variation (< 1%), with the exception of
Scenario 2. The carrying capacity limits the rate of entrainment due to the concentration of sediment already
in the water column, C, by a factor of 1−C/C∗. Thus, if C ≪ C∗ it has a negligible effect on the entrainment
process, but as C → C∗ it reduces the rate of entrainment to zero. It is therefore not unexpected that the
carrying capacity will have a strong effect on variation for scenarios where the concentration approaches the
carrying capacity, and a negligible effect otherwise. The carrying capacity is thought to be a global value,
possibly related to the sediment density, but is unknown.

With the exception of the steep slope in Scenario 5, these scenarios are insensitive to the measured gully
characteristics of slope, S, width, W , and head length Lh. This indicates that MERGE is not likely to be very
sensitive to how a gully system is delineated into one-dimensional sectors (see Roberts (2022) for an example
of segmenting a gully for modelling). If the slope is moderate and variation in the slope and width < 30%, the
section can likely be captured by a single set of parameter values.

One limitation of this study is the use of the ±30% bound in variation across all parameters. This choice is
reasonable for characteristics such as width, depth, flow and roughness, given the typical approach to dissect
a gully into approximately homogeneous sections (see for example Roberts (2022), Prentice et al. (n.d.)).
However, it is less realistic for sediment characteristics where a fixed rather than percentage error would better
reflect measurement error and natural variation in a system.

This sensitivity analysis reinforces previous calls for further research to understand the currently unknown soil
cohesion, power proportion, and carrying capacity parameters and how these should be selected in MERGE
(Prentice et al. 2021, Roberts 2022).

4 CONCLUSIONS

There are some practical outcomes that may be drawn from this study. The results show that the model param-
eter importance can vary significantly depending on the scenario. From a modelling perspective, insensitive
parameters that contribute negligibly to variance in the model response can often be disregarded for calibra-
tion purposes since they do not provide useful information. Care must be taken, however, not to assume that
a parameter that can be neglected in one scenario is not an important contributor to model output variance in
another, and vice-versa.

Gully model parameter sensitivities may also provide a useful reference point for informing decisions about
engineering solutions for gully rehabilitation.

Finally, the RS-HDMR is a robust regression model that is fully explainable and can be used as a surrogate for
the primitive MERGE model.
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