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Abstract: Developing a capability to track a contamination plume is desirable within both defence and 
civilian contexts. Example scenarios could include defence humanitarian and disaster relief missions where 
assistance is required in an area where contaminants have been released into the air as part of a natural disaster, 
e.g. the Fukushima nuclear disaster in 2011. Contaminants could be chemical, biological, radiological or 
nuclear. Here, tracking a dynamically moving contamination cloud or plume is essential to understand safe 
areas of operation. 

One proposed solution to this challenge is the use of a swarm of uncrewed aerial vehicles (UAVs or drones), 
carrying appropriate sensors, to locate and dynamically track the contamination plume. Developing such 
capability is challenging, and one critical step to achieve this is the development and use of an appropriate 
modelling and simulation capability. Drivers for this simulation based development approach include; the 
practical challenges for producing a contamination plume for field evaluation of solutions, the complexity 
involved in developing control mechanisms for a UAV swarm, and the environmental variability which make 
rapid field evaluation challenging and inconsistent. In this paper, we review current literature associated with 
modelling and simulation of this capability and propose a way ahead from the identified options.  

To develop, simulate and test a plume tracking capability as proposed, multiple interrelated components need 
to be developed. Firstly, an appropriate model of contamination plumes must be developed. This can be used 
to stimulate the UAV mounted sensors which feed measurements to plume tracking algorithms to 
collaboratively develop an estimation of the contamination plume. This estimated contamination plume can 
then bias the control of the UAVs towards regions of higher concentration, hence containing the UAVs in the 
plume and continuing to sense the contamination. This forms a control loop, adapting the position of the UAVs 
to track the movement of the plume. We review the current literature for each of these components of a plume 
tracking system, identify shortcomings or gaps in the existing approaches, and propose an end-to-end solution 
for modelling, stimulating and simulating this capability. The key findings were as follows; 

It was identified that there is limited research that presents a fit for purpose model of a contamination plume 
to stimulate the sensors and control components of a UAV swarm solution. Hence, we investigate this challenge 
and identify the range of plume modelling approaches. For our simulation purposes, we assess that a 
Lagrangian approach provides an appropriate balance of plume fidelity with low simulation overheads. 

When reviewing plume mapping algorithms for a distributed mobile sensor network, we found that limited 
existing research addresses the dynamic nature of a moving contamination plume. However, that is required 
for our application. 

Similarly, the coverage control component, which guides and controls the location of the UAVs, typically 
address static scenarios when producing optimal control solutions. Some dynamic coverage control approaches 
are identified but further work is required to provide stability guarantees when coupled with specific plume 
tracking algorithms. 

Once combined and integrated, these components will form a suitable simulation environment and 
implementation approach for UAV based contamination plume tracking solutions. 
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1. INTRODUCTION AND BACKGROUND 

The capacity to remotely detect and map a contamination plume, potentially with chemical, biological, 
radiological, and nuclear contaminants, is an area of interest to both civilian and defence groups. This could 
enable the remote identification of situations where the use of personal protective equipment is necessary or 
alternative routes are needed to avoid the contaminant. Similarly, this technology would be useful for first 
emergency responders and other civilian agencies to assess industrial emissions and evaluate air quality (Rosser 
et al. 2015). Since the early 1990s, remote sensing using mobile robots has emerged as a prominent research 
area. Several works have leveraged networks or “swarms” of robots to improve the efficiency and efficacy of 
mapping algorithms (Egorova et al. 2016; Silic & Mohseni 2019; He et al. 2019), with the latter two validating 
their approaches through experimentation. Work conducted in this field has led to several research directions, 
most notably in areas such as "gas distribution mapping" and "source localization" where significant progress 
has been achieved (Gongora et al. 2020). Early studies of gas source localisation (GSL) focused mostly on 
developing gradient-based contamination algorithms for tracking contamination plumes back to their source. 
The development of these algorithms was significantly impacted by source finding techniques that can be seen 
in nature. While these algorithms were successful in identifying contamination sources in highly controlled 
conditions, they often failed in dynamic environments. An important factor to consider is that gas plumes are 
propagated by turbulent wind. Even minor turbulence can disperse the gas into discrete packets. This makes 
the concentration gradient far from a smooth gradient, but intermittent, and with substantial concentration 
variations. Therefore, it is difficult to obtain accurate concentration measurements with available sensing 
technologies. Sensors with slow response times will cause even broader problems. Alternatively, probabilistic 
GSL models have demonstrated improved performance in more realistic situations. However, a limitation of 
current probabilistic approaches lies in the atmospheric transport and dispersion models that they use, which 
often do not accurately represent real plume structures, especially in turbulent conditions. Several review 
papers have been published on the topic of GSL using mobile robots; Lilienthal et al. (2006) discuss the initial 
investigations on the subject. Chen & Huang (2019) and Ishida et al. (2012) offer overviews of commonly used 
biologically inspired algorithms, as well as an introduction to probabilistic approaches, and Francis et al. (2022) 
cover the latest development in probabilistic GSL algorithms. 

Compared to the extensive work on GSL, gas distribution mapping (GDM) has received limited consideration. 
In addition to the temporal fluctuations of turbulent plumes, it is crucial to consider that gas sensors only 
provide measurements about a limited area of the plume. As a result, measuring the instantaneous concentration 
field without using a highly concentrated network of sensing devices is challenging. However, understanding 
the time-constant structure of a plume distribution can be more essential than pinpointing the precise source 
location. For instance, it can help identify areas with high concentrations of hazardous contamination and 
enable better risk management. Pervious work on GDM can be categorized into two groups: model-based 
approaches and model-free (statistical) approaches (Francis et al. 2022). A major restriction of the model-based 
approaches is that they primarily consider steady air flow without taking into account its direction and velocity. 
In realistic environments, however, time-varying airflow is much more common. Moreover, model-free 
distribution mapping algorithms can be used without assuming steady and uniform airflow, these algorithms 
will play an important role in decreasing the dependence of GDM algorithms on time-average dispersion 
models, Section 3 of this paper, will cover related work in this area, it will highlight the challenges that have 
been encountered and explore how we can address them. 

For our application in developing a UAV based contamination tracking capability, we believe it is necessary 
to employ multiple interrelated components to overcome these challenges. We have not identified any 
comprehensive work that covers all relevant aspects. We suggest the initial step in achieving this goal is to 
develop an appropriate plume simulation model. This is not addressed in the existing literature reviews. 
Creating a simulation model that accurately reflects real-world conditions allow us to evaluate and compare 
various gas plume mapping algorithms, under the same conditions. This will also enable us to test and refine 
the plume mapping system in a controlled environment, before conducting a field test. However, the existing 
work does not fully address the challenges of the plume modelling in the simulation. Therefore, in Section 2, 
we aim to fill this gap by defining the plume structure, examining current modelling approaches, and selecting 
the most promising one for future investigation. Once an appropriate plume model has been developed, the 
next step is to select the appropriate mapping algorithm for evaluation in the simulation. Section 3 provides a 
summary of the existing plume mapping algorithms by analysing the available literature reviews on this topic. 
We evaluate the strengths and weaknesses of each of the algorithms. Based on this analysis we select the most 
appropriate algorithm for future work. After developing the simulation capability and selecting the appropriate 
mapping algorithm, the next step is to design a control mechanism for the drone swarm. This will enable 
efficient and effective coordination of the UAV’s during plume tracking, including the ability to replace UAVs. 
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Section 4 discusses the complexities involved in developing control mechanisms and provide practical 
consideration of plume mapping. Section 5 presents the conclusion of the paper and proposed future work. 

2. THE STRUCTURE OF THE PLUME 

It is possible to gain an understanding of the structure of smoke plumes if we observe 
them from tobacco pipes. The end of the pipe heats up the air near the tip and then 
carries particles up that we call smoke; after leaving the source, they rapidly widen 
and then expand at a smooth and steady rate to form a discrete cloud without a fixed 
shape. Fig. 1 clearly demonstrates that initially laminar rise of hot air plume from a 
pipe transition to disordered, turbulent, motion of air a few centimetres away from 
the tip of the pipe. As the smoke rises, it accelerates because the warm air around it 
is less dense than the surrounding air, which create natural convection as it continues 
to rise and its velocity increases, it will eventually reach a threshold where its flow 
becomes turbulent. Up close, the smoke can be seen to contain thousands of 
filaments swirling in the wind with eddies at the edges. In the following section, we 
will delve into the work on plume simulation. One of the main reasons for 
developing simulated plume model is to evaluate and compare various 

contamination plume tracing algorithms, under the same conditions. This is because environmental parameters, 
such as wind, humidity, and temperature, greatly affect their performance. Simulation frameworks can also be 
used to test algorithms under different environmental conditions (strong airflows, turbulence, plumes, etc). 
Creating a simulation model that accurately reflects real-world conditions is a significant challenge, 
particularly when dealing with the intricate nature of contamination plume dispersal. 

2.1. Atmospheric dispersion model 

The transport of plumes in the atmosphere is primarily driven by wind (advection), and influenced by several 
other processes such as turbulent diffusion, deposition, chemical reactions, radioactive decay (where 
applicable)and physical transformations. These processes can be defined mathematically through the 
atmospheric transport equation. 

The complexity of atmospheric dispersion models depends on various factors such as the spatial scale of the 
dispersion, the weather, and the terrain. The choice of a model depends on the purpose and scale of the 
simulation, as well as computational resources. Models range from local scale models with simple assumptions 
to global models with detailed physics. Dispersion models need meteorological data to simulate plume 
transport processes. There are two ways of coupling these models with numerical weather prediction (NWP) 
models: offline (using precomputed meteorological fields) and online (simulating both meteorology and 
dispersion simultaneously and optimizing NWP to the release site). Atmospheric transport equation can be 
solved in an analytic, numerical, and stochastic ways, which yields the Gaussian, Eulerian and Lagrangian 
models (Leelossy et al. 2018).  

Gaussian models: Under the assumption of a single point source and uniform steady wind conditions, the 
analytical solution of atmospheric transport equation yields a normal distribution for the concentration field. 
Sutton 1953 proposed a Gaussian distribution model to describe gas plumes. The main advantages of Gaussian 
models are their short computation times and small input data requirements. A plume can be calculated by 
entering only a few parameters, making Gaussian models an effective tool for making decisions during 
emergency situations. However, the time-averaged Gaussian model do not capture short-term signatures of 
concentrations, the instantaneous peak concentrations or intermittent characteristics of plumes at short 
timescales (Farrel et.al. 2002). 

Eulerian models: Eulerian models consist of a system of second-order partial differential equations (PDEs), in 
which space and time are the independent variables.The quantity of the PDEs in this system is determined by 
the number of chemical species present in the plume. The solution of the system provides plume concentration 
as a function of both space and time. Due to spatial and temporal variations in wind velocity, these PDEs cannot 
be solved analytically. This led to the development of several powerful numerical methods. One of the most 
common techniques is the method of lines. Solving Eulerian models in 3D can be computationally intensive. 
Adaptive gridding and parallelization are two of the most efficient ways to reduce the execution time. CMAQ, 
EAMC, EURAD are the examples of existing tools that use the Eulerian models (Leelossy et al. 2018). 

Computational fluid dynamics (CFD) simulations: When atmospheric flow interacts with surface obstacles, its 
velocity profile undergoes significant changes, which can cause the spatial distribution of the plume to differ 
significantly from that over a flat surface. The NWPs models do not have the required resolution to accurately 

Figure 1. Transition 
from laminar flow to 

turbulent (Salmon 2015) 
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represent these changes, so it is necessary to use CFD simulations. In CFD simulations, Naiver-Stokes 
equations are solved on a fine grid to accurately capture the microscale wind and turbulence field. This allows 
for a more accurate simulation of the plume concentration distribution between surface obstacles. However, 
determining the appropriate mesh size, boundary conditions, and turbulence model can be a complex and time-
consuming task. There are various CFD software packages available for atmospheric simulations, including 
ANSYS Fluent and the open-source OpenFOAM model. 

Lagrangian models: Lagrangian particle dispersion models (LPDMs) track the motion of individual particles 
to model the evolution of a plume as it disperses in the atmosphere. The particle's location is the dependent 
variable and the particle motion is solved using a stochastic equation. LPDMs describe plume particle 
movement using stochastic ordinary differential equations (ODEs) with both advection and turbulent diffusion 
affecting particle velocity. Advection velocity is from NWP model data but small-scale wind fluctuations are 
captured using Langevin's equation (a Markov process). Lagrangian models simulate particle motion and 
output their 3D coordinates over time. Concentration is calculated by summing particles in a selected volume 
around a receptor in a grid. Complex chemical mechanisms can be challenging to solve with this method since 
concentration is not a dependent variable. The computational cost of Lagrangian models increases with the 
number of particles but even a few trajectory calculations can provide important information on dispersion 
direction. Lagrangian models have hybrid with both the Eulerian and Gaussian models. An example of a hybrid 
Lagrangian-Eulerian approach is DREAM, which starts with a Lagrangian model at the local scale and 
gradually transitions to an Eulerian model at the large scale. Fig. 2 provides a visual representation of a plume 
structure at different temporal scales.  

 
Figure 2. Visual representation of plume structure at different temporal scales. (A) shows the instantaneous 
structure (Eulerian model and Lagrangian model); (B) shows the average spatial distribution of plumes; (C) 
represents the average time and spatial distribution of plumes (Gaussian model) (Marjovi & Marques 2014) 

The black trace in Fig. 2 A depicts the real-time readings of a rapid gas sensor during cross-wind movement, 
the red trace in B represents the readings of a slower sensor (which functions like a low-pass filter) moving 
cross-wind, and the green trace in C shows the average of the readings over an extended time period. 

Leelossy et al. 2018 conducted a study on atmospheric dispersion modelling software and provided an 
overview of the available options. Their work highlights the different features and capabilities of each software, 
making it a useful reference for those looking to select the best tool for a specific application. Each of the 
mentioned modelling approaches has their own advantages and disadvantages. It is more feasible to use a 
Lagrangian model for evaluating plume tracking algorithms, as high-fidelity Eulerian models are 
computationally expensive. In addition to the above models, there exist approximated models such as the 
filament based model (Farrel et.al. 2002) that offer a cost-effective solution for simulating dynamic 2D 
concentration fields (see open-source PomPy model from GitHub - InsectRobotics/pompy). This model 
captures the key features of real plumes, including short-term intermittency, diffusive effects and spatial 
variation, and can be used in the simulation environment. However, they do not account for the effect of 
obstacles on wind field. In the case of dealing with obstacles, open-source, computationally low CFD software 
like OpenFOAM can be used. After the development of an appropriate plume model, the subsequent task is to 
choose the suitable mapping algorithm to generate an estimation of the plume from UAV sensors. This will be 
discussed in the following section. 

3. GAS DISTRIBUTION MAPPING 

The use of GDM has been extensively reviewed in the scientific literature, with Francis et al. (2022) study 
being the most comprehensive. Pervious work with a specific focus on methods developed in GDM can be 
broadly classified into two groups: model-based approaches and model-free approaches.  

Model-based gas distribution mapping approaches assume specific gas distribution models and estimate the 
corresponding parameters based on the measurements. Two model-based methods for mapping a plume using 
multi-agent systems have been presented in Egorova et al. 2016, Silic and Mohseni 2019. In Egorova et al. 
2016, a Luenberger observer is designed for plume dynamics following the 3D advection-diffusion equation. 
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In lieu of direct measurements of the gradient of the plume, a leader-follower algorithm is adopted to use 
measurements from multiple spatially-distributed agents to estimate the gradient. The coupling between the 
control system and estimator navigates the swarm to minimize uncertainty in the estimate of model parameters. 
In Silic and Mohseni 2019, a parameter estimator is proposed that utilizes online simulation of the plume to 
inform where to position agents. The performance of their approach is investigated through experiments with 
three fixed-wing drones, however is limited to a time-invariant model for the plume. These approaches offer 
several advantages as they require exploring only a small portion of space to create maps quickly. However, 
they are dependent on well-calibrated gas sensors, an established understanding of the interaction between the 
sensors and the environment, and often require knowledge about the source intensity. Furthermore, model-
based approaches rely on the accuracy of the underlying model, which can be computationally expensive for 
complex numerical models or based on unrealistic assumptions for simpler analytical models. 

Model-free approaches aim to accurately represent measured phenomena and estimate unseen values of at a 
specific location and time, using a set of collected observations. The majority of publications rely exclusively 
on spatial information when generating gas distribution models. The GDM approaches that are time-invariant 
assume that the random parameters being estimated remains constant throughout time. As a result, they model 
the observed phenomena without taking into account the time of sampling. Some studies have applied methods 
such as simple averaging of measurements or interpolation of collected data (Ishida, H., et al., 1998), which 
were employed in experiments conducted over extended periods of time and in confined settings. Hayes et al. 
2002, proposed the use of a histogram to represent the gas distribution that involved the averaging of 
neighboring measurements in the calculation of gas concentration. Lilienthal et al. 2004 utilized a method 
called Kernel DM, which forecast gas distribution over a grid using a Gaussian kernel. Later, kernel DM+V 
and Gaussian Process Mixture Model (GPMM) were presented (Lilienthal, A.J., et al., 2009), which estimate 
both the predictive mean and variance to provide a realist representation of gas concentration fluctuations. 
Blanco et al. 2013 introduced a Bayesian approach using Kalman Filtering. Reggente et al. 2009 expanded 
Kernel DM+V to Kernel DM+V+W to incorporate wind information. However, these statistical approaches 
assume that the gas distribution is generated by a time-invariant random process, which may not accurately 
represent the current gas distribution in many situations. A few publications have addressed the temporal aspect 
of GDM; Monroy 2013 developed a time-dependent GDM method using a Gaussian Markov Random Field, 
while Marjovi et al. 2014 presented a time-dependent approach analogous to Kernel DM+V. Both methods 
demonstrate better performance than time-invariant GDM approaches in controlled environments. Monroy's 
method accounts for obstacles while developing a statistical model and estimates gas distribution over a grid. 
This is achieved through a combination of Euclidean spatial distance and temporal difference weighting of the 
measurements, which is similar to kernel DM+V. The meta-parameters are defined heuristically with a linear 
decline in the importance of measurements. Asadi et al. introduced the concept of applying an exponentially 
reducing recency weight to include time-dependent extrapolation to kernel DM+V. Later they improved their 
model and introduced TD Kernel DM+V model. They presented two new solutions to combine time-
dependency, and evaluated them in both simulated and real-world experiments. Contrary to previous work, in 
the TD Kernel DM+V, the time-scale factor in the simulation environment is learned along with spatial meta-
parameters. The previous work's meta-parameter selection method was sometimes sensitive to initialization 
values, resulting in overfitting, but these issues have been addressed in the TD Kernel DM+V. We believe that 
the statistical approaches, particularly TD Kernel DM+V will play an important role in decreasing the 
dependence of GDM algorithms on time-average dispersion models and they will be the focus of future work. 
Kernel DM approaches are typically not concerned with the trajectories of robots throughout the search area, 
often relying on random or pre-defined trajectories. In He et al. 2019, a Gaussian-based kernel method was 
evaluated experimentally using three multi-rotor drones. He et al.’s method, referred to as Gaussian-plume 
kernel mapping, was compared to both Kernel DM+V and Kernel DM+V/W, with the latter closely related to 
Gaussian-plume kernel as both incorporate wind measurements/estimates. In the associated experiments, the 
search area was partitioned into three, and each agent followed a lawn-mower pattern to cover their individual 
search areas. Coverage control algorithms for multi-agent networks find locally-optimal spatial distributions 
for agents, subject to sensing performance and contextual environmental information.  

4. UAV SWARM CONTROL SYSTEM 

Distributed control of mobile sensor networks provides a variety of desirable properties in real-world 
environments, such as reduced communication and computational burdens, scalability and robustness 
(Martinez et al., 2007). Coverage controllers are a class of distributed motion coordination algorithms that is 
suited to plume estimation. 
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The coverage control problem aims to spatially disseminate a network of mobile 
agents over a desired region subject to an associated cost function. Each agent is 
equipped with a sensor for measuring a component of the environment 
(contamination) in assigned sub-regions, and a mapping referred to as a density 
function assigns a level of importance to each point in the coverage region. The role 
of the density function depends on the application; in the context of this work, it is 
used to represent concentration field within the plume. Du et al., 1999 discussed the 
existence of minimisers of the cost function, which occur when agents are located at 
the geometric centroid of their coverage sub-regions. 
Sub-regions are generated by partitioning the space 
based on the network state, with the optimal partition 

known as the Voronoi partition (pictured in Figure 3). Intuitively, the Voronoi 
partition divides the space into sets of points or cells that are closest to a given 
agent. Voronoi partitions are defined under a particular distance metric; choosing 
the distance metric that corresponds to the sensor model yields the optimal 
partition. A centroidal Voronoi tessellation (CVT) refers to configurations where 
agents are located at the centroid of their respective Voronoi cells, which form 
the equilibria of the cost function. Cortes et al., 2004 presented a control law for 
agents with single-integrator dynamics that drives the network to a CVT. Agents compute their control law 
while only relying on local information from agents with neighbouring Voronoi cells. As agent centroids 
depend on the density function, the network is attracted to areas of higher density. Figure 4 shows a CVT for 
5 agents under a Gaussian density function. In (Kennedy et al., 2019), controllers were presented that are able 
to track time-varying density functions; an essential characteristic for tracking a dynamic contamination plume. 

Online estimation of the density function has received interest in the literature. Guarantees on convergence of 
the network and density estimates rely on the representation of the density function. Gaussian regression was 
used in (Santos et al. 2021) for non-parametric representations, though relies on centralized processing of the 
estimate. Schwager et al., 2017 developed an estimator for density functions represented by a collection of 
Gaussian basis functions, however agents are required to transit through the mean of each basis before covering 
the area to ensure sufficient richness of the estimate. The approach in (Schwager et al., 2017) distributes 
estimation across the network and guarantee the system converges to a CVT. However, convergence guarantees 
are only provided for static density functions, which limits their application to plume estimation. 

5. CONCLUSION AND FUTURE WORK 

This paper presents an overview of recent research on the multiple interrelated components of plume mapping 
in the simulation environment, including plume simulation model, estimation algorithms and swarm-control 
strategy. Creating a realistic simulation model will enable us to test and refine the plume mapping system in a 
controlled environment, before conducting a field test. Therefore, as an initial stage in our future work we need 
to select an appropriate plume simulation model. As high-fidelity Eulerian models are currently too 
computationally expensive to use in plume-mapping algorithms, a Lagrangian model may be adequate for the 
listed purpose. Existing approximated models, such as Filament-based models, are also computationally 
efficient and can be analysed using Monte Carlo techniques. Once we have selected a suitable plume model, 
we will compare and evaluate plume-mapping techniques in simulation. The aim is to investigate how effective 
these techniques are at enabling drones to estimate and map a dynamic contamination plume using coverage 
controllers. Our study of various plume-mapping algorithms revealed that model-based gas distribution 
mapping approaches rely on the accuracy of the underlying model. It is impractical to apply complex numerical 
models that rely on fluid dynamics simulations. Simpler analytical models often based on unrealistic, can only 
be used in scenarios where these assumptions are valid. Alternatively, most statistical approaches assume that 
gas dispersion is a time-invariant process. While this assumption holds in some situations, it cannot model well 
evolving gas plumes. Yet, Time-dependent gas distribution modelling approach such as TD Kernel DM+V 
enhanced accuracy in forecasting unobserved measurements Therefore, for our use case, TD Kernel DM+V 
model provides an appropriate representation of the plume and reduces the reliance of GDM algorithms on 
time-average dispersion models. Coverage control algorithms are well suited for optimal distribution of a 
dynamic sensor network over a search area. Estimates of the plume can be used to bias the network towards 
regions with higher concentration, which may lead to more efficient trajectories for agents to sample along in 
kernel-based estimation approaches. However, as coverage control networks exhibit nonlinear dynamics, the 
control law and estimator need to be considered together when analysing the stability of the system. A variety 
of estimation techniques for coverage controllers have been presented in the literature, including both model-
based and model-free approaches. Each is limited in their ability to estimate and track dynamic plumes in a 

Figure 4. Centroid Voronoi 
tessellation under Gaussian 

density function ϕ 

Figure 3. Voronoi 
partition for 60 agents 
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distributed setting. Future work involves providing stability guarantees for time-varying coverage controllers 
using both kernel-based estimators and Luenberger observers for time-varying plume representations, and 
experimental validation of the listed approaches. Future work involves expanding a coverage control system 
from 2D to 3D, providing stability guarantees for time-varying coverage controllers and the selected plume-
mapping algorithm in preparation for real-world experiments. Outdoor field experiments with a swarm of 
UAVs will be conducted to verify that the proposed solution can map plumes with a suitable sensor suite.  
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