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Abstract: The applications of machine learning (ML) techniques in real estate practices has become popular 
recently. Specifically, ML techniques are often used to develop Automated valuation models (AVM), which 
purpose is to provide a price estimate of a particular property at a specified time. The main objective is to 
minimise human intervention in the process of price estimation. Apart from the users providing a set of inputs 
which, in the present context, would be a set of property features, the AVM would provide a price estimate 
without any human intervention in the estimating process. The recent literature show that such prediction 
process performed much better than the traditional approach. However, the presence of missing values in the 
data remains a major challenge in developing AVM using ML techniques. Therefore, this paper examines 
different approaches to handle missing values in the context of developing AVMs using various tree based 
algorithms. 

This paper has two main objectives: (i) it examines the performance of Gradient Boosting Machine (GBM) in 
the presence of missing values. Recent literature suggested that GBM can still provide accurate prediction in 
the presence of missing values and this paper examines this claim in the context of AVMs; (ii) Using GBM, 
this paper compares some common strategies in managing missing values as well as a special strategy that only 
applicable for machine learning methods. This helps to identify any extra benefits in using machine learning 
techniques. It is worthwhile noting that data can be missing in both training and testing stages. Ideally, a model 
can be trained with missing values in the training set as well as having the ability to make predictions when 
some of the inputs (features) are missing in the test set. 

The results show that the proposed GBMs can predict more accurately than the traditional hedonic model across 
different forecast criteria. The results are also unaffected by the choice of missing value strategies. This is 
consistent with the results in recent studies. In addition, the proposed implementation required minimum 
human intervention in both training and testing stages, even in the presence of missing values. Thus, machine 
learning methods would appear to be more efficient in addition to being more accurate in predicting house 
price. 
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1 INTRODUCTION

The purpose of an Automated valuation model (AVM) is to provide a price estimate of a property at a particular
time without, or with minimum, human intervention after the models are established (RICS 2021). In AVM
literature, statistical models have been used to predict market prices of properties (Anglin & Gencay 1996,
Parmeter et al. 2007, Haupt et al. 2010, for example). Recently, machine learning techniques have also been
applied to predict prices of residential properties. For examples, Kagie & Van Wezel (2007), Kok et al. (2017),
Mayer et al. (2019), and Schulz & Wersing (2021) apply suites of machine learning models, such as Random
Forest, Gradient Boosting Machine (GBM) and Neural Network among others. The results generally show that
machine learning methods could produce more accurate predictions than classical parametric models, but this
benefit is relatively less compared with non-parametric models. Interestingly, GBM has always been ranked
high, if not the highest, among the highest tier. However, discussions on their limitations are often lacking in
these studies. Perhaps more importantly, the proposed AVMs in these studies still require substantial human
intervention even after having been trained due to some reasons, such as missing values, which makes them
not truly automated.

Missing values are common in property transaction data, which creates an obstacle in developing an AVM.
Missing values can appear in the training (or estimating) stage of the AVM, but also in the prediction stage.
Note that while it is sometimes possible to fill in missing observations, this is usually done manually on an
observation-by-observation basis. This is extremely time-consuming and becomes impossible, or at least, in
practical, once a dataset is large. In other words, an ideal method should allow missing values in the training or
estimation stage of an AVM, and it should also allow predicting when some of the inputs (features) are missing.
Complete case strategy is by far the most common method of dealing with missing values in many studies,
for example, Kok et al. (2017), Schulz et al. (2014) and Steurer et al. (2021). It only keeps those observations
that have no missing values, while the others are dropped. Its advantage is simplicity, since a standard analysis
can be applied without further modifications (Little & Rubin 2002). However, it often leads to a sizeable loss
of observations, and it also means that the resulting AVM cannot make predictions with incomplete inputs.
Actually, the observed part of incomplete observations that is not missing but dropped, could be valuable in
estimation. Simply ignoring them is unwise and may increase the sample selection bias if missing values are
not missing at random. The preferred strategies should preserve all relevant information from each observation
and handle missing values during model training (or estimation), such as Knight et al. (1998), Kagie & Van
Wezel (2007) and Hinrichs et al. (2021). These require appropriate data preparation before estimation or that
the training (or estimation) procedure can handle missing values. In any case, the ability to handle missing
values is a crucial requirement in developing a robust and practical AVM given their frequency in real estate
property-level transaction data (Krause & Lipscomb 2016).

This paper examines the prediction performance of Gradient Boosting Machine (GBM) when developing an
AVM given missing values in data. The choice of GBM are two-folded. First, it outperforms other machine
learning models in a similar context (Kok et al. 2017, Mayer et al. 2019, Schulz & Wersing 2021). Second,
GBM can incorporate different strategies to handle missing values, which will be comprehensively examined in
this paper. Two of them (complete case strategy and multiple imputation strategy) are commonly used in a wide
range of areas. The third strategy namely missing value node strategy, is designed for treelike machine learning
models, which has the ability to accommodate missing values in both the training and prediction stages and
does not require any additional computation to fill the missing values. In order to examine robustness of their
performances, this paper compares these methods and strategies under two different loss (objective) functions
with different forecast criteria. Models are trained using a rolling window procedure with the usual out-of-
sample predictions to assess their predictive performance. The preference is that the model is able to provide
the most accurate predictions and meanwhile requires no or less extra modifications for data. The results
will shed light on three research questions, (i) is GBM a valuable method to develop AVM with excellent
prediction performance similar to other prediction problems as shown in the recent literature; (ii) Does the
prediction performance depend on the choice of loss functions and (iii) what other benefits do machine learning
techniques provide other than accurate predictions? The rest of the paper is organized as follows. Section 2
explains the method we use in the study. Section 3 presents the dataset used briefly, and Section 4 shows the
analysis procedure and its results. Section 5 concludes.

2 GRADIENT BOOSTING MACHINE

This section introduces the GBM. Consider a dataset DN = {xi; yi}Ni=1, where xi = (x1i, . . . , xMi) contains
the ith observation of the M predictors and define Xm = (xm1, . . . , xmN )′ as the mth predictor that contains
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N values. Thus, X = (x′
1, . . . ,x

′
N )′ = (X1, . . . , XM ) is the N ×M data matrix that some elements could

be missing.

Gradient boosting machine (Friedman 2001, 2002) is one of tree based machine learning methods, that the
fundamental is decision tree1 (Breiman et al. 1984). Initially, the basic concept of decision tree is recursive
partitioning. This process could be roughly summarized by two steps (James et al. 2017):

1. The predictor space, the set of possible values for M predictors, is divided into J distinct and non-
overlapping regions, R1, . . . , RJ .

2. The predictions of observations are calculated in their own region, Rj .

Partitioning process starts from selecting the predictor (Xm) and the cut point (c), such that the predictor space
is divided into two regions, RLeft(m, c) = {X|xmi < c}Ni=1 and RRight(m, c) = {X|xmi ≥ c}Ni=1. A more
detailed description about decision tree can be found in Breiman et al. (1984) and Hastie et al. (2009). The
algorithm of GBM is to grow a sequence of decision trees to improve predictions. Each new tree is grown
using the information from previously grown trees, all the trees are in the same “family line” (James et al.
2017). The preliminary of GBM is to decide the hyperparameters2, J terminal nodes (or the depth (or size) of
each tree d), the number of trees (or iterations) B, and the learning rate λ. It starts of with an initial guess of
response F0(X).

F0(X) = γ0 = argminγ

N∑
i=1

L(yi, γ). (1)

where L(·) is the loss function. In each iteration b, the current “pseudo”-residuals are calculated using the
previous information.

ỹib = −
[∂L(yi, F (xi))

∂F (xi)

]
F (X)=Fb−1(X)

, i = 1, . . . , N. (2)

Then, a J terminal nodes’ tree is grown using the current “pseudo”-residuals ỹib and all observations xi.

{Rjb}J1 = J terminal nodes′ tree({ỹib,xi}N1 ). (3)

The outputs of the tree in the iteration b are

γjb = argminγ

∑
xi∈Rjb

L(yi, Fb−1(xi) + γ). (4)

Finally, the predictions are updated using the outputs.

Fb(X) = Fb−1(X) + λ · γjb · 1(xi ∈ Rjb). (5)

After repeating B times, the final output predict values are

FB(X) = F0(X) +
B∑

b=1

λγb. (6)

The model details about GBM algorithm could be found in Friedman (2001, 2002).

Missing value node, a built-in technique, allows GBM to handle missing values in the fitting procedure. It
treats missing values as a new category of observations when a node is split. Thus, GBM allows assigning
missing values in the primary selected predictor of one split to a new node, rather than to the left or to the right
as usual. The observations in the missing value node could be partitioned again as long as the estimation would
be improved3. A schematic example is shown in Figure 1. If there are missing values in the selected predictor
1In this case, decision tree is for solving regression problem. The description introduces the characteristics of decision tree when it builds
a regression model. For classification problem, the description is slightly different.
2These parameters could be called the tuning parameters also. They must be tuned for achieving the best performance. The depth (or
size) of each tree d is commonly used in implementation packages rather than J terminal nodes.
3Missing value node is generated in each split as security mechanism, even the primary selected predictor of one split has no missing
value. This is for prediction purpose, in case that missing values appear only in test data.
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(X1) of the top split, the observations with missing values are assigned to Rna,1 = {X|x1i = NA}Ni=1. The
rest is distributed to the left if x1i < c1, and to the right if x1i ≥ c1 (i = 1, . . . , N). If X2 is unobserved in
some observations, they are assigned to Rna,2 or Rna,3.

Figure 1. An example of missing value node in an individual tree.

3 A BRIEF DESCRIPTION OF DATA

The dataset is provided by the Western Australian Land Information Authority, that operates under the business
name of Landgate. Only the market transactions of residential properties in the Greater Perth metropolitan area
(excluding Mandurah) from 2015Q1 to 2020Q4 are included for the analysis. Each observation documents in-
formation about transaction information, parcel details, and dwelling details, such as sale price, date, location,
property types4 and the number of housing features. From 2015 to 2020, there are 21,231 (12% approx.) new
established properties sold, 174,137 transactions (observations) in total. Missing values are preserved in the
dataset.

The summary of variables is presented in Table 1. It summarizes the statistics for 174,137 observations. The
price is deflated by the Residential Property Price Index (RPPI) from the ABS, the reference period is the
financial year 2011–2012. In the table, some characteristics show low level of missingness, the rates are
higher than 0.09% but lower than 1.6%. The missing rate of floor area, however, is around 35%, which is
much heavier than the others. Compared with other datasets used in real estate literature, the missing rate of
the dataset is mild5.

Table 1. The summary statistics for the sold residential properties in the dataset, Jan 2015 - Dec 2020.

Variable NA num Mean S.D. Variable NA num Mean S.D.
Price ($,000) 0 573.221 416.015 Dining 0 0.685 0.468
Land size (m2) 0 927.504 5,054.839 Family 0 0.594 0.496
Floor area (m2) 61,114 155.240 75.039 Game 0 0.203 0.407
Age (year) 1,243 27.504 21.937 Meal 0 0.308 0.464
Bedrooms 1,139 3.221 0.854 Study 0 0.197 0.407
Bathrooms 290 1.645 0.599 Car ports 0 1.499 0.770
Lounge 1,139 1.007 0.086 Tennis court 0 0.001 0.028
Kitchen 1,139 1.010 0.105 Pool 0 0.169 0.375
Tile-roof 2,707 0.798 0.401 latitude 0 -31.970 0.167
Brick-wall 169 0.935 0.247 longitude 0 115.856 0.096

4 PRICE PREDICTION FOR RESIDENTIAL PROPERTIES

To provide up-to-date price predictions, models are periodically maintained by adding new market transactions
and removing old transactions in real estate industrial practice. In this study, rolling windows strategy is
4The most property type is houses (66.1%), followed by group houses (12.7%) and the rest types.
5Kagie & Van Wezel (2007) use the Dutch housing data that the missing rates of some features are from 0.2% to 70%. In Sydney
(Australia) housing data, about 47% of full data have one or more missing values in the housing characteristics in Hill & Scholz (2018,
Web appendix). Graz (Austria) residential transaction data used in Steurer et al. (2021) contain 11,250 incomplete cases, around 40% of
total cases. In Zillow Prize data available in Kaggle, around 0.38% of observations don’t have information about the number of bathrooms
and bedrooms. 9.25% of lot size is unknown and 72.82% of air conditioner details are missing, etc.
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applied to study the predictive performance of AVMs. The training datasets contain observations in two-year
(eight-quarter) length period. We repeatedly shift this window by one quarter and re-apply the models. The
testing datasets are constructed by observations transacted in the following quarter of training periods.

The model specification is similar to those of standard hedonic price models. The response is the logarithm of
transaction price and the predictors are the housing characteristics, temporal and spatial factors (xi).

pi = log(Pi) = f(xi) + ϵi. (7)

where the function structure (f ) is GBM6 in this case. Three strategies for the missing value issue are applied,
including missing value node strategy, complete case strategy and multiple imputation strategy7. In addition,
two common loss functions (the least squares (LS) and the least absolute deviations (LAD)) are used to elim-
inate other interference. The linear models are the benchmark for the comparison. Thus, the players at the
game table are introduced in Table 2, and all implementations could run automatically.

Table 2. The description of models.

Model Model description

GBM (LS) unmodified training sets (missing value node strategy), GBM and LS loss function.
GBM (LAD) unmodified training sets (missing value node strategy), GBM and LAD loss function.
GBM (LS, MI) multiple imputed training sets, GBM and LS loss function.
GBM (LAD, MI) multiple imputed training sets, GBM and LAD loss function.
GBM (LS, C) modified training sets with complete cases only, GBM and LS loss function.
GBM (LAD, C) modified training sets with complete cases only, GBM and LAD loss function.
Linear (LS, MI) multiple imputed training sets, linear function and LS loss function.
Linear (LAD, MI) multiple imputed training sets, linear function and LAD loss function.

The log-scaled predictions are transformed back to the natural scale. We evaluate the performance of the
candidate models based on the percentage prediction errors (ek). The assessment measures we use are mean
percentage error (MeanPE), median percentage error (MedianPE), mean absolute percentage error (MAPE),
root mean squared percentage error (RMSPE), and percentage error range (PER) 8. They cover bias, absolute
difference, squared difference and error range, four major groups of metrics.

4.1 Results

The quarterly rolling windows are implemented on the dataset. Except models using multiple imputation
strategy, the testing datasets used are the same, which may contain missing values. For models applying
multiple imputation strategy, the missing values in the test sample are imputed by the imputation model for
the training datasets, which follows the common process of multiple imputation strategy for forecasting. The
overall results of the different implementations are shown in Table 3, which presents the overall error metrics
through the 16 rolling windows.

4.2 Gradient boosting machine and linear hedonic model

Through results shown in the table, the GBMs clearly outperform the linear hedonic models with the same
settings (GBMs (LS & LAD, MI) vs Linears (LS & LAD, MI)), that is in line with Mayer et al. (2019),
Schulz & Wersing (2021). Averagely, the GBMs reduce mean absolute percentage error by around 8%, around
40% improvement to the linear hedonic models. They also present around 12% less for RMSPE, around
40% more accurate with respect to the benchmarks. For PER(10) (PER(20)), there are about 42% (15%)
of observations that the absolute prediction errors are more than 10% (20%) of their valuations, there are
6The hyperparameters are tuned by grid searching and ten-fold cross-validation on the training sets. If two sets of hyperparameters have
the same ranking, we choose the most parsimonious and conservative one. The idea is similar to the one standard error rule that is applied
in Hastie et al. (2009).
7Missing value node strategy is directly applied on the unmodified training sets, the other two strategies need some adjustments on the
data set.
8PER(a) = 1

Ntest

∑Ntest
k=1 1(|ek| ≥ a)
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about 63% (36%) for the same metrics of the linear models. These improvements could be possibly due to
modelling algorithm. GBM could measure more complex relationships among predictors rather than linearity.
Additionally, partitioning process could distribute extreme values to some nodes to isolate them from the
normal observations in the other nodes. These value might be well treated in their own nodes rather than with
all observations. This may avoid huge accuracy drop in some extreme cases, especially compared with linear
models.

Table 3. The predictive performance of models.

Model MeanPE MedianPE MAPE RMSPE PER(10) PER(20)
All test samples (N = 113, 104)
GBM (LS) 0.77 0.31 11.86 17.82 42.99 15.57
GBM (LAD) 0.84 0.18 11.77 18.52 41.60 15.14
GBM (LS, MI) 0.77 0.33 11.81 17.68 42.85 15.50
GBM (LAD, MI) 0.83 0.19 11.76 18.46 41.70 15.11
GBM (LS, C) 4.26 0.41 19.05 33.01 54.01 29.43
GBM (LAD, C) 3.84 0.12 18.95 32.44 53.28 29.52
Linear (LS, MI) 0.30 -3.17 19.84 30.19 64.03 36.42
Linear (LAD, MI) 3.58 0.14 20.04 30.58 62.69 35.98

4.3 Least squares (LS) and least absolute deviations (LAD)

Overall, LAD benefits AVMs more. On average, models using LAD reduce PER(10) by approximately 1%,
Per(20) by roughly 0.5%. This indicates that more observations are accurately predicted when LAD is applied.
LAD is less sensitive to outliers and can prevent their influence, because all errors are given the same weights
when the loss is calculated. This could make estimates more accurate for most observations. In addition, LAD
provides a special quantile of predictions’ distribution, and these predictions come with a 50% confidence.
This advantage and its extensions could benefit some special purposes in practice, such as risk management
for mortgage portfolio.

4.4 Missing value strategies

Three missing value strategies are comprehensively compared within the GBM’s family. Overall, the GBMs
using missing value node strategy are the recommended choice regardless of loss functions. The complete
case strategy is the simplest – the observations with missing information are discarded carelessly. However,
the drawback is significant – the accuracy of prediction would be apparently decreased9 when missing value
occurs in testing sets. The GBMs (LS, C and LAD, C) show roughly 7% more MAPE, 14% more RMSPE
and 14% more PERs than the GBMs (LS and LAD). The multiple imputation strategy is to use complete cases
and observed characteristics (omitting the target variable) to impute missing information multiple times in the
training and testing sets. Compared with the GBMs (LS and LAD), the performance is at the same level.
The differences in MAPE, RMSPE and PERs are negligible, less than around 0.1%. However, this strategy
requires imputation steps before and after modelling, which makes the procedure much more complex than
the other two. The above two have their own shortcomings, one has a simple process but low accuracy, the
other is accurate enough but complex. The GBMs applying missing value node strategy become the game
changer with a simple procedure and providing accurate predictions. This strategy allows missing values
being simultaneously dealt with estimation in one step. It gives a clue or a chance to partition the incomplete
cases, then, forecast using the observed information, regardless of missingness types.

5 CONCLUSIONS

This paper established several implementations of automated valuation models with different missing value
strategies for residential property price prediction in Perth, Western Australia. There are three important
insights proposed. Firstly, the results suggest that GBM is a competent model that can provide better prediction
accuracy than the linear hedonic models completely, which is in line with the previous research in the literature.
Then, loss function is a worthwhile aspect to investigate, especially when the least squares loss is not always

9The worse situation is that the prediction can’t be provided, for example when complete case strategy is applied on linear model.
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the best. Especially, in practice, there are diverse purposes of constructing an AVM with machine learning
methods, not only for predicting the prices. Most importantly, GBM with missing node strategy and the least
absolute deviation loss may be the best alternative for classic valuation models. The missing node strategy is
designed for (tree-like) machine learning methods, it provides an unsophisticated implementation procedure
and incredible prediction accuracy. This proves that machine learning methods indeed provide extra benefits,
a better path for dealing missing values, other than precious forecasts. Additionally, missing values may not
have to be arbitrarily or experientially dropped, but could be automatically and simultaneously handled within
estimation stage, while no preparation, such as imputation, is required.
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