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Abstract: In recent times, the use of machine learning in academic research has become a more and more 
attractive option, an option that is becoming increasingly popular in the field of econometric research A 
significant amount of econometric literature has pitched the use of machine learning techniques for the 
purposes of improving research in roles such as variable selection or causal effect evaluation, in papers such 
as Athey and Imbens (2017) and Varian (2014). However, conversely, there is an equal amount of literature 
warning against blindly making use of these techniques without adjustments in papers such as Athey and 
Imbens (2019) and Mullainathan and Spiess (2017). 

In order to attain a better understanding of how the estimators provided by some of these machine learning 
techniques behave compared to their more traditional counterparts, this paper conducts a Monte Carlo 
Simulation study between Shrinkage based techniques such as LASSO and the Elastic Net, against Logistical 
Regression in a sparse multinomial model environment, comparing both selection consistency and estimator 
variance between different sample sizes. 

Overall, the results of this paper show that when dealing with sparse multinomial environments, of the methods 
tested, the Elastic Net provides the clearest advantage in selection consistency, both being able to mark strongly 
relevant variables as strongly relevant more often than LASSO and Logit, but also managing to avoid marking 
irrelevant variables as relevant. Moreover, when compared to its peers Elastic Net holds the greatest advantage 
when dealing with datasets with low samples. However, this advantage is not universal, as it holds a natural 
bias when assigning values to coefficients and its ability to pick out weakly relevant variables is comparable 
to that of Logit. 
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1 INTRODUCTION

In recent times, the use of machine learning in academic research has become a more and more attractive
option, an option that is becoming more and more popular in the field of Econometric research A significant
amount of econometric literature has pitched the use of machine learning techniques for the purposes of im-
proving research in roles such as variable selection or causal effect evaluation, in papers such as Athey and
Imbens (2017) and Varian (2014). However, conversely, there is an equal amount of literature warning against
blindly making use of these techniques without adjustments in papers such as Athey and Imbens (2019) and
Mullainathan and Spiess (2017).

In order to attain a better understanding of how the estimators provided by some of these machine learning
techniques behave compared their more traditional counterparts, this paper conducts a Monte Carlo Simulation
study between Shrinkage based techniques such as LASSO and the Elastic Net, against Logistical Regression
in a sparse multinomial model environment.

2 BACKGROUND

A significant amount of econometric literature has pitched the use of machine learning techniques for the
purposes of improving research. Varian (2014), for example, highlights a few machine learning techniques
they think are beneficial to the econometric field, proposing using machine learning for variable selection,
data manipulation and model selection. Athey and Imbens (2017), conversely, in their review on techniques
evaluating the causal effects of policies, specifically highlight the use machine learning techniques have found
evaluating both average and heterogeneous causal effects. Other similar econometric review papers include
Kuan and White (1994), Gentzkow et al. (2017) and Chen (2021).

However, there is parallel literature warning econometric researchers of the danger of blindly applying machine
learning techniques to problems without thought. A major theme of Athey and Imbens (2019)’s review notes
that while there are cases where using off the shelf machine learning techniques would be sufficient, to adapt
to the need of the econometric researcher machine learning techniques typically need careful adjustment and
adaption to the specific problem they are trying to address. Similarly, Mullainathan and Spiess (2017) notes
the danger in blindly accepting machine learning based predictions as inference, recording the field’s focus on
predicting ŷ rather than accurate estimator values as a concern.

As there is an innumerable variety of machine learning techniques, of which only some of the most popular
include the weights based Artificial Neural Networks proposed by McCulloch and Pitts (1943) and the decision
tree based Random Forests by Breiman (2001) and the many variations thereof, this paper will primarily focus
on one of them, regularisation, more commonly referred to as Shrinkage, due to the ties it has with econometric
literature. For example, Shrinkage has found some use in the econometric field as a form of variable selection -
where explanatory variables are subjected to regularisation to determine if they are relevant to the determinant,
typically followed by placing the relevant variables into a chosen model such as basic OLS (for example, Caner
et al. (2016), Shi (2016)).

2.1 Regularisation and Shrinkage Estimators

When stepwise regression fell out of more general use due to criticisms such as the tests being biased as
demonstrated by Wilkinson and Dallal (1981), regularisation came in to fill the niche that it left behind. One
of the most simple examples of which is Ridge Regression, defined below as an objective and a penalty
function, where θ is a p x 1 vector of parameters, x denotes a k x 1 vector of explanatory variables and y is
the determinant. The first half of the equation, g(θ;y,x) represents the objective function and the second half
λp(θ;α) is the penalty function.

θ̂ = argmax
θ

g(θ;y,X)− λp(θ;α)

First introduced by Hoerl and Kennard (1970), ridge regression aims to reduce prediction error in the model
through the elimination of irrelevant variables. Rather than testing all variables for relevance, ridge regression
subjects the sum of all estimators to a size limit, with the aim of shrinking irrelevant variable parameters down
to insignificance.

Naturally, there have been multiple variations of the shrinkage estimator developed. One of the most well
known being the prior mentioned LASSO, which penalises estimators to an absolute size limit, introduced by
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Tibshirani (1996). Other models proposed include the elastic net, first proposed by Zou and Hastie (2005),
which uses both the shrinkage and LASSO estimator in conjunction with differing weights in order to make use
of both of their strengths in evaluating estimators. Being some of the most popular and most basic shrinkage
methods, an examination of these processes will both provide strong contributions to the literature by showing
how the absolute size limit affects the produced estimators. Moreover, examination of these methods will
provide a good base for comparison to more exotic, less used shrinkage estimators.

This paper aims to both contribute to the machine learning and the econometric literature by conducting simu-
lation studies in order to get a better grasp of the advantages and disadvantages that shrinkage based methods
can provide over their more traditional counterparts such as Logistical Regression in a non-linear environment.

3 EXPERIMENT DESIGN

In order to test the ability of shrinkage against their more traditional counterparts, Monte Carlo simulation
studies of a sparse multinomial model with three classes with 250 repetitions were conducted to pit the perfor-
mance of LASSO and the+-lastic Net against Logistical Regression, referred to henceforth as Logit regression.
Moreover, for each repetition, differing sizes of samples will be regressed to evaluate how well these regres-
sion methods perform at low to high sample sizes. Sample sizes tested will be in order, 500, 1000, 2000 and
4000. The process of generating the simulation data will be as follows:

3.1 Data Generation

Ten explanatory variables will be randomly generated for this Monte Carlo study numbered x1 through x10,
using the means and standard deviations shown in the table below.

Figure 1. Means and Standard deviations of Explanatory Variables

Using these explanatory variables, a dependent variable y with values of 1, 2 or 3 which will dictate its class
will be generated with the following binary regressions as a base:

Pr(Yi = K) = 1
1+

∑K−1
k=1 eβk∗Xi

(1)

Pr(Yi = k) = eβk∗Xi

1+
∑K−1

k=1 eβk∗Xi
, k < K (2)

Wherein K, the number of classes present, equals 3, Pr(Yi = 1) = Pr(Yi = 3) = 0.2 and Pr(Yi = 2) = 0.6,
or in plain terms, on average, there will be a 20% chance of y being class 1 or 3 and a 60% chance of it being
class 2. The coefficients for the explanatory variables are as follows:

Figure 2. Coefficient Values with respect to their explanatory variables and their classes.

Note that in order to create a sparse model environment, a majority of the variables are unrelated to determining
the determinant variables class, and for the purposes of regression, Class 3 will be deemed the ’base’ class,
with coefficient values of 0 across the board. Moreover, in order to evaluate the regression method’s sensitivity,
differing coefficient values will be tested. As can be seen in Figure 2, 4 of the relevant variables will have a
strong effect, with a coefficient value of 0.2 and 2 of the relevant variables will have a ’weak’ effect, with
coefficient values of 0.005

3.2 Evaluation

Two metrics will be used to compare the ability of the regression methods. The first is selection consistency,
or the percentage number of times that a method correctly marked a relevant variable as significant or an
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irrelevant one as insignificant. Selection consistency will be demonstrated as a %, out of the 250 repetitions
that a regression method marked a variable’s coefficient as significant. In regards to shrinkage based methods,
selection will be defined by the coefficient being assigned a non-zero value. For Logit, selection will be
determined through a p-value less than 0.05, worked out through a Wald test. The second metric used will be
coefficient variance or how consistent the values of the coefficients are assigned by the regression method - for
both shrinkage and Logit, this will be shown by a histogram showing the spread of predicted coefficient values
over the 250 repetitions.

4 RESULTS OF MONTE CARLO SIMULATION

4.1 Selection Consistency
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Figure 3. Selection consistency for X1 in relation to Class 1

As can be seen above, Figure 3 demonstrates the method’s selection consistency for one of the ”strong” coeffi-
cients, X1 in relation to class 1. At the smallest sample size of 500, the Elastic Net performs the best, followed
by the Logit and the LASSO (marked on this Figure and the following Figures as Maximum Likelihood) Ac-
cordingly, all methods improve with increasing sample sizes, and once the second largest sample size of 2000
is reached, all methods accurately assign relevance to X01 100% of the time.
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Figure 4. Selection consistency for X1 in relation to Class 2

Following up, Figure 4 displays the selection consistency results for another X1 in relation to class 2 instead,
another one of the ”strong” coefficients. Unlike the results of Figure 3, LASSO outperforms Logit at the small-
est size - demonstrating that Logit’s superiority to the LASSO in detecting theser variables are not guarenteed,
however, Elastic Net again, like in Figure 3 outperforms both at all sample sizes.

Overall, these results demonstrate that, in terms of detecting ”strong” coefficients Elastic Net consistently
outperforms the other two methods, especially at small sample sizes, while LASSO and Logit’s ability may
vary.
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Figure 5. Selection consistency for X2 in relation to Class 2

Comparatively, Figure 5 displays selection consistency results for one of the ’weak’ coefficients, X02 in rela-
tion to class 2. Like in the previous Figures, the Elastic Net demonstrates the best performance, outperforming
the other methods when marking X03 as relevant at all sample sizes and additionally improving with higher
sample sizes. Comparatively, while LASSO does also outperform Logit, its selection consistency actually
peaks with the sample size of 1000 and begins to decrease in accuracy, demonstrating some irregularity in
behaviour, which is also reflected in Logit, which also seems to decrease in efficacy with the higher sample
sizes.
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Figure 6. Selection consistency for X3 in relation to Class 1

In contrast to the result of Figure 5, LASSO performs the worst out of the three methods, hardly even marking
X3 in relation to class 1 as relevant, while the performance of the Elastic Net and Logit varies by sample size,
neither being able to clearly be called superior in this case.

Over, unlike with the strong coefficients, none of the tested regression methods can be clearly marked as
’definitively’ better compared to the others when selecting weakly relevant factors. That being said, LASSO
performs the worst out of the three methods in this field consistently.
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Figure 7. Selection consistency for X5 in relation to Class 1

Finally, Figure 7 demonstrates the selection consistency of an irrelevant variable - in this case X05 in regards
to class 1 - meaning the less it is selected by the relevant methods the better.

In this regard, both shrinkage based methods outperform Logit at all sample sizes, consistently marking it as
irrelevant. Despite initial poor performance Logit gradually improves as the sample size increases however it
never matches the ability of LASSO or Elastic Net, demonstrating shrinkage’s superior ability in this regard.

4.2 Estimator Consistency
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Figure 8. Estimator Consistency for X1 in relation to Class 1

Figure 8 displays the estimator variance of the three methods of x1 in relation to Class 1. There appears to not
much difference in the variance in predicted values for the coefficient value, with the main difference being,
as expected, the shrinkage-based methods having a bias in value compared to the true value of 0.2 due to the
nature of shrinkage.
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5 CONCLUSION

With the aim of improving the understanding of how machine learning techniques, this paper performed a
Monte Carlo simulation of a sparse multinomial environment to compare the performance of shrinkage based
techniques such as the Least Absolute Shrinkage and Selection Operator or LASSO, and the Elastic Net against
the more traditional Logit Regression.

Overall, the results of this paper show that when dealing with sparse multinomial environments, of the methods
tested, the Elastic Net provides the clearest advantage in selection consistency, both being able to mark strongly
relevant variables as strongly relevant more often than LASSO and Logit, but also managing to avoid marking
irrelevant variables as relevant. Moreover, when compared to its peers Elastic Net holds the greatest advantage
when dealing with datasets with low samples. However, this advantage is not universal, as it holds a natural
bias when assigning values to coefficients and its ability to pick out weakly relevant variables is comparable
to that of Logit.
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