
A simplified model for plant breeding
K. Davis a, P. Le Bodic a, A.T. Ernst b, R. Kapoor c, R. Garcı́a-Flores c

aFaculty of IT, Monash University, VIC 3800, Australia
bSchool of Mathematics, Monash University, VIC 3800, Australia

cCSIRO Data61, Private Bag 10, Clayton South, VIC 3169, Australia
Email: Kelvin.Davis1@monash.edu

Abstract: This paper introduces a simplified deterministic model for plant breeding and an efficient algorithm
to solve it. The model abstracts away much of the complexity of plant breeding to a version that can be solved in
polynomial time. While this model only considers single-point recombinations and assumes all desired cross-
ings are successful, it provides a lower bound on the number of generations required to achieve the target. The
algorithm presented exploits runs of favourable alleles on producible gametes to guide its decision-making,
which highlights the importance of considering segments rather than individual alleles. This paper suggests that
seg-ments will be instrumental in the development of efficient algorithms for more comprehensive plant
breeding models. However, future research should explore extending the model to account for factors such as
polyploid plants and resource constraints that breeders face in reality. Overall, this paper serves as the first in a
series of models exploring dedicated solving techniques applicable to plant breeding problems.

Keywords: Plant breeding, crossing schedule, ideotype, segments, dominance

25th International Congress on Modelling and Simulation, Darwin, NT, Australia, 9 to 14 July 2023
mssanz.org.au/modsim2023

181

Figure 1. An example genotype with a single pair of chromosomes and nl = 8 loci represented by a 2 × nl
bit matrix. Yellow cells (1) represent favourable alleles and blue cells (0) represent unfavourable alleles.

1 INTRODUCTION

Plant breeding is the process of improving the traits of agricultural crops via the cross-breeding (crossing) of
parent plants. Typically, this starts by mapping the locations on the plants genome (referred to as loci) that control
the trait of interest and measuring the effect of each allele (the substring of DNA encoded at each locus) on that
trait. Using this mapping, an ideal target plant can be specified and a crossing schedule that prescribes a partially
ordered set of crossings to create the target (El-kebir 2009), starting from an initial population of plants, can
be derived. Given the time and resource intensive nature of breeding programs, breeders aim to create crossing
schedules that minimise the number of generations, crossings, and resources required to create the target.

Over the last two decades, the planning of plant breeding programs has been increasingly modelled using opera-
tions research tools. Individuals (plants) are often modelled as vectors or matrices of bits, with a 1 representing if
an allele is favourable and 0 otherwise (Moeinizade et al. 2021), as shown in Figure 1. In this fashion, a population
of plants can be encoded as a binary input to an optimisation problem. Furthermore, the children of any pair of
parents must be a combination of bits sourced from either parent. Altogether, this allows plant breeding to be
modelled as the creation of an individual with only favourable genes (i.e. bit vectors or matrices of 1) from a
starting population under some objective.

Several approaches have been explored to solve plant breeding problems optimally. Such approaches include enu-
meration (Servin et al. 2004), dynamic programming (El-kebir 2009), and Mixed Integer Programming (Canzar
& El-Kebir 2011, Xu et al. 2011, De Beukelaer et al. 2015). However, these approaches are limited in instance
sizes that can be solved as they scale exponentially with respect to their input, with Xu et al. solving under 50 loci
instances at max. In practice, some plant breeding problems involve thousands of locations on the genome. As
such, current optimal solving techniques are ill-equipped to deal with problems of that size. Heuristic and Monte
Carlo approaches have also been employed to tackle these problems as well (Meuwissen et al. 2001, Daetwyler
et al. 2015, Han et al. 2017, Moeinizade et al. 2021) but these methods lose the benefit of optimality. So far little
work has been done to isolate the components of the problem that can be solved efficiently as subproblems.

In this paper, we present a vastly simplified model of plant breeding that minimises the number of generations
required to create a given target under a highly restrictive set of assumptions. Such a model will serve as the back-
bone to a hierarchy of models presented in future works exploring the effect of different complicating components,
eventually coalescing in many of the practical models addressed in the literature and improved algorithms to solve
them. We derive an efficient algorithm that makes greedy choices over the runs of consecutive favourable alleles
and contrast its efficiency against two brute force algorithms that ignore these runs.

The rest of the paper is laid out as follows. Section 2, establishes the assumptions made, notation used, and
the decision problem solved in this paper. Section 3 describes the preconditions for feasibility before detailing
an efficient algorithm to solve the p roblem. Section 4 presents the computational experiments used to highlight
the efficiency of the algorithm presented in Section 3 . Finally, the ramifications and limitations of the work are
presented in Section 5.

2 PROBLEM SPECIFICATION

In order to define an abstraction of t he p roblem, we make t he following a ssumptions: (1) any two individuals
can cross, including with themselves, (2) all recombinations (crossovers) are single-point, (3) when crossing two
individuals, we decide which offspring, among all possible offspring, are generated, (4) the alleles of all input and
generated chromosomes and gametes are known, (5) mutations are not considered, (6) all individuals are diploid,
i.e. they consist of two chromosomes, one from each parent.

182

The reasons for these assumptions are: (1) this corresponds to angiosperms, i.e. all plants that flower, which is
most plants, (2) multi-point recombinations are rare, and harder to deal with algorithmically, (3) we assume that, in
practice, in order to generate the desired offspring from any pair of parents, we would cross the parents sufficiently
many times, (4) finding the genotype of an individual is generally possible at a reasonable cost through the use of
markers, (5) undesirable mutations can be avoided for the reasons given for (3), and desirable mutations are too
random to plan around, (6) while many plants are polyploid, we start with diploid as it is the simplest to solve.

With these assumptions, there is no uncertainty left either in the input or in the crossings that could be used within
a breeding schedule. Therefore, what remains of the problem is a deterministic optimisation problem that consists
in minimising the number of generations required to produce the target individual.

Figure 2. An example of a crossing between individuals x and y to produce z. Each individual performs
recom-bination to produce gametes gx and gy before these gametes fuse to produce z. Contrastive highlighting is
used to show which alleles are used to source gx and gy , for instance, gy is sourced from prefix y1,1...4 and suffix
y2,5...8.

We refer to individuals by their genotype, a specification of the alleles at each locus on each chromosome. For-
mally, we represent diploid genotypes as pairs of bit strings, i.e. x ∈ {0, 1}2×nl where nl is the number of loci on
the chromosome and each bit xi,j represents the allele on chromosome i at locus j. The target individual x∗ is thus
a genotype whose alleles are all favourable, i.e. x∗

i,j = 1 ∀i ∈ {1, 2} j ∈ [nl]. We denote Pt as the population of
genotypes at generation t with P0 being the initial population.

The crossing of individuals involves the fusion of pollen and egg cells, referred to as gametes, from each parent.
In our model, a gamete gx ∈ {0, 1}nl of an individual x, is created by sourcing bits from either x1,p or x2,p for all
loci p ∈ [nl] such that the number of times the source chromosome switches from x1 to x2 or visa versa is at most
1. Thus, crossing individuals x and y to create z involves creating gametes gx and gy and fusing them together to
create the offspring z = (gx, gy) as shown in Figure 2. We define g∗ as a gamete with all favourable alleles g∗ =
(1, . . . , 1) such that x∗ = (g∗, g∗). We denote Xt as the set of gametes producible by any genotype in Pt, i.e. Xt =
{gx | gx ∈ Xx, x ∈ Pt} where Xx is the set of gametes producible from x. Furthermore, let Gx,y be the set of
offspring of parents x and y.

Definition 2.1 (Crossing Schedule). Inspired by the definition provided by Canzar & El-Kebir (2011), for any set
X , initial subset X0 ⊂ X , predicate R(x, y, z) and target x∗ ∈ X , let a crossing schedule T over (X, X0, R, x∗) be
a directed acyclic graph from source nodes containing members of X0 to a single sink node containing x∗. All
internal nodes of T , including the sink node, have exactly two parents where for all internal node z with parents x
and y, the relation R(x, y, z) holds. Furthermore, the number of generations required to produce any x is its depth
from the source nodes. Thus, the number of generations required to produce x∗ is given by the height of T .

It is worth noting that R(x, y, z), introduced here to parameterise crossing schedules for different classes of ob-
jects, is a relation that constrains the domain of z subject to x and y. In the problem addressed in this paper, R(x,
y, z) holds if and only if z is one of any of the possible offspring of parents x and y, i.e. z ∈ Gx,y . Thus, implicit to
finding any crossing schedule T is the realisation, for each internal node z of T , of the recombinations required to
create z from its parents in order for R to be satisfied. We henceforth refer to this instance of R as mateGen(x, y,
z).

2.1 Decision Problems

We define the following decision problem to be answered in this paper.

Problem 2.2 (CROSSINGSCHEDULE)
Input: initial population of genotypes P0 and generation number tmax.
Question: Does a crossing schedule T over (P, P0, mateGen, x∗) exist with height ≤ tmax?

183

In order to solve Problem 2.2, we perform a chain of reductions to simplify the problem. For any non-trivial
problem where x∗ /∈ P0, creating x∗ requires creating two copies of g∗ starting from the population of gametes X0

producible from P0. New gametes can be created through the process of fusing parent gametes into and producing
new gametes from the intermediate individual, gz ∈ X(gx,gy). Let mateGam(gx, gy, gz) be the predicate that
describe this relation. The following decision problem encapsulates this transformation and is paired with a
reduction from Problem 2.2 below.

Problem 2.3 (CROSSINGSCHEDULEGAMETE)
Input: initial population X0 of gametes and generation number t′max.
Question: Does a crossing schedule T ′ over (X ,X0,mateGam, g∗) exist with height ≤ t′max?

Reduction from Problem 2.2 to Problem 2.3. Given an instance (P0, x
∗, tmax) of Problem 2.2, instance

(X0, g
∗, t′max) of Problem 2.3 is constructed by letting X0 be an initial population that contains all of the ga-

metes that can be produced by any genotype in P0, i.e. X0 = {gx | gx ∈ Xx, x ∈ P0} the new target g∗ is defined
as g∗ = (1, . . . , 1) where g∗ ∈ {0, 1}nl , and t′max = max(0, tmax − 1) as an extra generation is required to create
x∗ from its constituent g∗ gametes.

The next problem describes the flow of favourable genetic material from X0 to g∗ and highlights which runs of
favourable alleles (referred to as segments) in each gamete contribute to g∗.

Definition 2.4 (segment). A favourable contiguous segment (abbrev. segment) is a tuple cx = (sx, ex, g
x) that

represents a maximal contiguous sequence of indices from sx to ex where ∀p ∈ {sx . . . ex}, gxp = 1. Note that
for any segment (sx, ex, gx), sx ≤ ex.

Let St be the set of all segments on gametes in Xt. The goal of Problem 2.3 is to create g∗ which both contains
and requires the creation of a c∗ = (1, nl, g

∗) segment. Thus the number of generations required to create g∗ is
also the number of generations required to create c∗. Any two overlapping or adjacent segments, i.e. segments
cx = (sx, ex, g

x) and cy = (sy, ey, g
y) where sx < sy ≤ ex+1 ≤ ey , can be joined via recombination to create a

segment that covers the union of cx and cy , namely cz = (sx, ey, g
z), where gz ∈ X(gx,gy) is a gamete created via

recombination in the intersection of cx and cy . Similar to mateGen and mateGam, mateSeg(cx, cy, cz) describes
this relation. Segment pairs that do not meet this condition are either disjoint and so cannot be joined into a single
segment in a single recombination, or are not worth joining because one of the segments is covered by the other.
Thus, the second reduction transforms Problem 2.3 into the following decision problem:

Problem 2.5 (CROSSINGSCHEDULE)
Input: initial population S0 and generation number t′′max.
Question: Does a crossing schedule T ′′ over (S,S0,mateSeg, c∗) exist with height ≤ t′′max?

Reduction 2 from Problem 2.3 to Problem 2.5. Given an instance (X0, g
∗, t′max) of Problem 2.3, the instance

(S0, c
∗, t′′max) of Problem 2.5 is constructed by letting S0 be set of all segments attached to any gamete in X0,

c∗ = (1, nl, g
∗), and t′′max = t′max as g∗ implies the existence of c∗ and visa versa.

3 METHODS

3.1 Feasibility

Here we present the feasibility conditions for Problem 2.5. An instance of Problem 2.5 is feasible if and only if
for every locus p ∈ [nl] there is at least one segment c ∈ S0 that contains it, i.e. ∀p ∈ [nl], ∃c ∈ S0, p ∈ c.
This condition is necessary as every allele in any segment cz and, by extension, c∗ must be sourced from one of
its ancestors in S0. Assuming this condition holds, we show that this is also sufficient for feasibility by way of an
algorithm to solve Problem 2.5.

3.2 Segment-based algorithm

We now derive an algorithm that constructs an optimal crossing schedule from P0. In the special case where
x∗ ∈ P0, The optimal crossing schedule T consists of a single node representing x∗ whose height is 0. The
remainder of this section assumes x∗ /∈ P0 and feasibility holds. After extracting S0 from P0, all that remains is
to form minimum height crossing schedule T ′′ from segments in S0 to c∗.

Let S∗ = {c1, . . . , cns
} be a minimal subset of segments of S0 that covers [nl] ordered by start point. All

successive pairs of segments ci, ci+1 ∈ S∗ can be joined in the manner described above. As these joins are

184

associative, they can be arranged as the internal nodes of any binary tree whose leaves from left to right correspond
to segments in S∗. The shallowest such tree is a balanced binary tree with height ⌈log2(|S∗|)⌉. Thus, the algorithm
to answer Problem 2.2 works by extracting all segments from P0 and choosing the minimum covering subset S0.
The optimal crossing schedule is produced by joining the chosen segments in pair-wise fashion until c∗ is created,
as shown in Figure 3.

Figure 3. An illustration of a crossing schedule constructed using the segment-based algorithm with (left) the
extraction and joining of S∗ from P0, followed by (right) the crossing schedule created using these joins under the
mappings in Appendix A. While this figure depicts an instance where P 0 contains only two individuals, instances
of Problem 2.2 can contain any non-negative number of individuals in P0.

Using the results derived, Problem 2.2 can be answered in O(nl|P0|) and its crossing schedule can be found in
O(nl · (|P0| + nl)). Extraction of S∗ can be achieved in O(nl|P0|) time by maintaining an array of size nl that
stores the largest segment with start point sx found so far at index sx of the array and performing at a single pass
over the array to select the minimum covering subset. The cardinality of S∗ is bounded by nl as each segment
must cover at least one unique locus and P∗ must cover [nl]. The cost of joining of any two segments costs O(nl),
therefor the construction the crossing schedule from S∗ has a time complexity of O(nl

2).

4 RESULTS

We benchmark the segment-based algorithm derived in Section 3 against two naive algorithms. The first of these
algorithms repeatedly breeds all possible offspring from all possible pairs of parents until x∗ is found. The second
algorithm we benchmark against improves on the first by removing all genotypes dominated by other genotypes
in each generation where any x is dominated by y if every favourable allele in x is also in y.

The three algorithms were tested on uniform random feasible instances whose initial populations P0 contain
|P0| = 6 individuals each with nl loci varying from nl = 1 to nl = 104. This allows testing of scenarios where
the segments in S∗ can be drawn from a single to multiple genotypes without excessive computational cost for the
naive algorithms. For each benchmark, 1000 instances are sampled for each value of nl and the average runtime
is recorded. The algorithms are implemented in Python 3.7.11 and are run single-threaded on an Intel i7-8750H
processor running at 4.100GHz.

Figure 4 presents the average runtime as a function of the number of loci in the initial population. The results
clearly demonstrate the superiority of the segment-based approach over the naive methods. Notably, the runtime
of the naive algorithms exhibits a significant exponential increase, with the first and second algorithms taking more
than 1 second to complete at 10 and 16 loci, respectively. In contrast, the segment-based algorithm can efficiently
solve much larger instances, handling up to 10,000 loci instances in less than 0.1 seconds. Overall, these findings
highlight the potential efficiency benefits of segment-based approaches to plant breeding.

5 DISCUSSION AND CONCLUSION

This paper presented a simplified deterministic model for plant breeding and an efficient algorithm to so lve it.
Such a model while not immediately usable to plant breeders, will serve as the first in a series of models exploring
solving techniques applicable to plant breeding problems. The model presented abstracts away much of the com-
plexity of plant breeding to a version that can be solved in polynomial time. Given that this model assumes the
success of each crossing in the optimal schedule, solving this model provides a lower bound on the number of gen-
erations that would be required to achieve the target in practice, as well a crossing schedule that can be achieved
even with great cost. This implies that the algorithm for this model can be used as a heuristic in algorithms, such as
A*, to solve more complex variants. Finally, simplifying the model to this extent led to an algorithm that utilised
the runs of favourable alleles on producible gametes to guide its decision making.

185

Figure 4. A log-log plot of the average runtime in seconds of the two naive algorithms (blue and orange)
and the segment-based algorithm (green) with respect to the number of loci nl. Each data point is the average
runtime over 1000 random feasible instances.

Core to the efficiency of this algorithm is the exploitation of segments, whose utility has remained largely unex-
plored in previous works to date. The algorithm presented highlights the importance of paying consideration to the
runs of favourable alleles rather than the individual alleles by themselves. This is simply an extension of alleles
which, on their own, are already abstractions over the nucleotide bases that constitute the individual’s DNA. We
posit that segments will be instrumental in the development of efficient algorithms for more comprehensive plant
breeding models.

While these assumptions simplify the problem, they may not hold in practice, especially for plants with multiple
sets of chromosomes or for breeders with limited resources. Thus, future research should explore how to extend
our model to account for these factors and develop solving techniques that can handle these extensions. Further-
more, while our model and algorithm have shown promising results, there are still several open questions that need
to be addressed. For instance, we have not explored how our approach would perform for polyploid plants, which
are common in many agricultural crops. Moreover, we have not considered the resource constraints that breeders
face in reality, which could limit the applicability of our algorithm. Future research should investigate these issues
and develop more comprehensive models and algorithms that can handle these challenges.

REFERENCES

Canzar, S. & El-Kebir, M. (2011), A mathematical programming approach to marker-assisted gene pyramiding,
in T. M. Przytycka & M.-F. Sagot, eds, ‘Algorithms in Bioinformatics’, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 26–38.

Daetwyler, H. D., Hayden, M. J., Spangenberg, G. C. & Hayes, B. J. (2015), ‘Selection on optimal haploid
value increases genetic gain and preserves more genetic diversity relative to genomic selection’, Genetics
200(4), 1341–1348.

De Beukelaer, H., De Meyer, G. & Fack, V. (2015), ‘Heuristic exploitation of genetic structure in marker-assisted
gene pyramiding problems’, BMC Genetics 16(1), 16.

El-kebir, M. (2009), Crossing schedule optimization, Master’s thesis, Eindhoven University of Technology.
Han, Y., Cameron, J. N., Wang, L. & Beavis, W. D. (2017), ‘The predicted cross value for genetic introgression of

multiple alleles’, Genetics 205(4), 1409–1423.
Meuwissen, T. H., Hayes, B. J. & Goddard, M. E. (2001), ‘Prediction of total genetic value using genome-wide

dense marker maps’, Genetics 157(4), 1819–1829.
Moeinizade, S., Han, Y., Pham, H., Hu, G. & Wang, L. (2021), ‘A look-ahead Monte Carlo simulation method for

improving parental selection in trait introgression’, Scientific Reports 11(1), 1–12.
Servin, B., Martin, O. C., Mézard, M. & Hospital, F. (2004), ‘Toward a theory of marker-assisted gene pyramid-

ing’, Genetics 168(1), 513–523.
Xu, P., Wang, L. & Beavis, W. D. (2011), ‘An optimization approach to gene stacking’, European Journal of

Operational Research 214(1), 168–178.

186

A REDUCTION PROOFS

Let T , T ′, and T ′′ be the optimal crossing schedules that answer Problem 2.2, Problem 2.3, and Problem 2.5,
respectively.

A.1 Proof of Reduction 1

Let the mapping T ′ to T , performed by function fT ′→T , be defined as follows:

• For all source nodes in T ′ representing gx, create a source node in T representing the unique genotype
x ∈ P0 that gx was sourced from.

• For all gametes gz in T ′ with parents gx and gy , there is a node in T representing z with parents x and y
where z = (gx, gy); for the triple of nodes in T representing x, y, and z, edges ⟨x, z⟩ and ⟨y, z⟩ are created
in T .

• A sink node is created for x∗ and a pair of edges from the current sink node this new node representing x∗.
This represents the final selfing of T .

Under this mapping, any such T mapped from T ′ has height(T) = height(T ′) + 1 as the number of generations
to produce x∗ is the number of generations to produce g∗ with one more for x∗ to mature.

Lemma A.1. If T ′ has minimum height then fT ′→T (T
′) also has minimum height.

Proof. If T ′ has minimum height, then the minimum number of generations to create g∗ is height(T ′). x∗ =
(g∗, g∗) requires two g∗ gametes and thus, assuming x∗ /∈ P0, the minimum number of generations to create
x∗ is height(T ′) + 1. fT ′→T (T

′) also has height height(T ′) + 1, so fT ′→T (T
′) must therefore have minimum

height.

Using the mapping T ′ → T , the Yes and No answers are preserved by the reduction.

A.2 Proof of Reduction 2

Let the mapping T ′′ to T ′ be defined as follows:

• For each node in T ′′ representing segment (sx, ex, gx), create a node in T ′ representing gx with only one
node for each unique gx.

• For each edge ⟨(sx, ex, gx), (sz, ez, gz)⟩ in T ′′, create an edge ⟨gx, gz⟩ in T ′.

Under this mapping, any such T ′ mapped from T ′′ has height(T ′) = height(T ′′) as creating c∗ implies creating
g∗ and visa versa. Thus, the Yes and No answers are preserved by the reduction from Problem 2.3 to Problem 2.5.

187

	Introduction
	Problem Specification
	Decision Problems

	Methods
	Feasibility
	Segment-based algorithm

	Results
	Discussion and Conclusion
	Reduction proofs
	Proof of Reduction 1
	Proof of Reduction 2

