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Abstract: Demand for mineral resources is increasing, forcing mining companies to exploit lower grade 
and more heterogeneous ore bodies to maintain supply. High variability in mill feed leads to higher operating 
costs, greater energy and water usage, increased environmental impact, and in some cases, major capital 
investment to build more complex processing plants. Mining companies therefore need models that can 
accurately predict optimal processing parameters early in the life cycle of the mine, ideally from exploratory 
drill core data. Enhanced knowledge of ore body characteristics is vital for profitability and should ideally 
involve a geometallurgical program at the early stage of mine development that can help identify potential 
processing issues prior to major investment. Due to steady advances in technology, machine learning and the 
use of advanced statistics, much data is collected during exploration and resource drilling, yet this is often not 
used to its maximum to build robust geometallurgical models. Machine learning and deep learning are 
attracting research attention and implementation across the mining sector and fast becoming an integral part of 
industry’s drive to greater agility and efficiency because they have the capacity to deal with large, multi-
dimensional datasets. 

The primary objective of this study is to employ Hotelling T 2 and squared prediction error (SPE) control charts 
to detect changes in optical images of drill core using latent variables extracted from the images’ features. 
Local binary pattern (LBP) is utilized as the feature extraction method and has been previously validated as a 
robust and efficient technique for various mining applications. Results from a test drill hole suggest the 
presence of two main regimes separate mid-way along the drill core (at ca. 350m), and also show that LBP 
features are sensitive to the reference data used for constructing the control charts. 

Keywords: Local binary pattern, multivariate process control, image analysis, mineral processing 

25th International Congress on Modelling and Simulation, Darwin, NT, Australia, 9 to 14 July 2023 
mssanz.org.au/modsim2023

314

https://orcid.org/0000-0003-3079-2515


Gu et al., Change detection in drill core images based on local binary pattern.

1 INTRODUCTION

The exploitation of increasingly lower grade and more heterogeneous ore bodies is driving mining companies
to acquire an enhanced knowledge of ore body characteristics in order to sustain profitability. Mineral textures
play an important, yet often overlooked role in prediction of mineral processing behaviour and can be identified
as a key geometallurgical indicator. Mineral textures have inextricable relationships with both lithology and
mineralogy but are also linked to other ore properties such as porosity, the relationships between grains of
different minerals, and the physical arrangement between ore and gangue components. This information is
crucial for understanding, predicting, and hence optimising, downstream processes. Numerous authors have
shown that rock texture affects strength, grindability, liberation, target grain size, and product particle size
distributions in the comminution circuit. Texture also impacts potential mineral grade-recovery relationships
during flotation (Gaspar & Pinto 1991). It is worth noting that even ores with identical chemical and mineral
compositions can behave very differently during downstream processes if their textures differ substantially
(Donskoi et al. 2016).

Drill core images are a crucial source of information for geologists, mineralogists, and mining engineers.
These images capture the physical and chemical properties of the rock formations and provide valuable in-
sights into the geological history of the region. However, the visual inspection of drill core images is often
time-consuming and subjective, making it difficult to detect subtle changes in textural properties over time.
Therefore, there is a growing need to develop automated and objective methods for change detection in drill
core images.

2 MATERIALS AND METHODS

The drill core, which is 96 mm in diameter and 598.2 m in length, was obtained from the Boart Longyear test
site at Brukunga, South Australia. One hundred and three optical images were taken using a 360◦ rotational
camera, each being a rectangle of size 302 mm by 5800 mm, with a resolution of 144 dots per inch (psi).
Each optical image consists of 170 by 1396 pixels. Examples of optical drill core images are shown in Figure
1. Artifacts can be observed on the images as black clouds and black vertical lines in the centre of the core.
Each optical image was then divided into non-overlapping sub-images for textural analysis, each representing
an interval roughly 0.1 m in length. We refer to these 5,982 sub-images as images. The local binary pattern
(LBP) is calculated for each image, as a textural descriptor. Summary features of the LBPs are defined, and
the aim is to use these features to identify outlying images or outlying segments of contiguous images.

Figure 1. Examples of optical drill core images, each of 5.8 m in depth.

2.1 Local binary pattern (LBP)

Local binary pattern (LBP) is a texture descriptor that captures the local variations in an image by comparing
the intensity of a pixel to its neighbouring pixels. Mathematically, given the central pixel c, the LBPr, p(c)
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code at c with distance of r, and p neighbours is as follows:

LBPr, p(c) =

p−1∑
b=0

s(gb − gc)2
b, s(x) =

{
1, x ≥ 0.

0, x < 0.
(1)

where g(.) represents the grey value, and r represents radius of circle and p is the associated number of
neighbours. Typically, radius r is taken as 1 and gives p value of 8. An example is illustrated below (Figure 2).

Figure 2. An example of calculating the LBP1,8(), for the central cell with gray value of 13.

Local binary pattern (LBP) is straightforward to describe and implement, and has been applied widely. How-
ever, its high dimensional feature space makes it computationally expensive. Compared with the traditional
LBP which considers all possible 28 sequences, uniform LBP gives a lower dimension of feature vector (59
features) and the idea is based on the assumption that some LBP features occur more frequently than others.
Uniform LBP focuses on sequences of cells surrounding pixels that change from lighter than the central pixel
to darker than the central pixel at most once (Figure 3). That is at most two 0-1 or 1-0 transitions, and all the
other patterns are assigned to a single bin. The result is 58 uniform binary patterns and 1 non-uniform pattern,
where the 58 features correspond to the following decimal LBP values: 0, 1, 2, 3, 4, 6, 7, 8, 12, 14, 15, 16,
24, 28, 30, 31, 32, 48, 56, 60, 62, 63, 64, 96, 112, 120, 124, 126, 127, 128, 129, 131, 135, 143, 159, 191, 192,
193, 195, 199, 207, 223, 224, 225, 227, 231, 239, 240, 241, 243, 247, 248, 249, 251, 252, 253, 254 and 255
(Figure 3). So, for each image with r rows and c columns, where r varies around 24 and c is 170, the LBP
pattern is identified for non-edge pixels giving a r − 2 by c − 2 LBP matrix. A LBP histogram with 59 bins,
corresponding to the count of each of the 59 uniform LBP patterns, is then built to represent the image. We
define the counts as the image features (fk).

Figure 3. Uniform LBP patterns.

2.2 Change detection using LBP features

We have a sequence of 5,982 images, each consisting of 59 features, and we refer this sequence as a (multivari-
ate) depth series. The principal component analysis (PCA) is implemented to reduce not only the dimension
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of the features, but also eliminate the correlations between the features. The correlations of the 59 features
are calculated, and form a 59 × 59 correlation matrix. The PCA follows directly from the eigenvalues and
eigenvectors of the correlation matrix, that is

C = PDPT ,

where C is the correlation matrix, P consists of the eigenvectors and D is a diagonal matrix consisting of
the eigenvalues. The first 20 principal components (PCs) are used, as they account more then 80% of the
variability in the features, and have the form PC1

...
PC20

 =

 a1,1 . . . a1,59
...

...
...

a20,1 . . . a20,59


 f1

...
f59


and variance λj , where λj is the eigenvalue for PCj and (aj,1, . . . aj,59) is the corresponding eigenvector. We
define the value of PCj for image i as tij , and the variance of PCj is λj . Hotelling T 2 is defined as

T 2
i =

20∑
j=1

t2ij
λj

, (2)

for i = 1, . . . , 5982. Large values of T 2 identify outlying observations.

The squared prediction error (SPE) statistic is an alternative indicator of outlying values, and is calculated as
follows. We define the features for image i as fik where k runs from 1 up to 59. We then project these 59
features onto the first 20 PCs, that is

f̂ = ATPC ⇐⇒

 f̂1
...
ˆf59

 =

 a1,1 . . . a1,59
...

...
...

a20,1 . . . a20,59


⊤  PC1

...
PC20

 .

Then,

SPEi =
59∑
k=1

(fik − f̂ik)
2, for i = 1, . . . , 5982. (3)

The Hotelling T 2 and SPE statistics are commonly used in multivariate statistical process control (MVSPC),
when it is assumed that the mean and covariance structure will be constant when the process is operating
correctly. However, a constant mean and covariance structure is not realistic for a drill core. We can still
formally implement MVSPC, using either the correlation matrix calculated from the entire length of the drill
core or the correlation matrix based on a particular segment of the drill core (reference group). Here, we
perform PCA of the features for: all 5,982 images in the entire depth series; and also for five sub-sequences of
the images. To obtain the five reference groups, we divide 5,982 images into five consecutive non-overlapping
groups (i.e, in the first group i runs from 1 up to 1,196, in the second group i runs from 1,197 to 2,392 and
so on). A PCA model is then applied to each reference group, and used as the base for the Hotelling T 2 and
SPE for the entire depth series. The rationale is that if the correlation matrix changes outside the reference
group this will lead to increases in the levels of T 2 and SPE. For example with T 2, changes in PC20 which
are relatively small in the reference group get divided by the relatively small λ20, and if changes in PC20 tend
to be larger outside the reference group they will have a substantial impact on T 2 when divided by the λ20

calculated from the reference group.

Both T 2
i and SPEi are plotted against image number, i, as is the custom for MVSPC. However, in MVSPC

control limits are set from theory based on an assumption of independent observations from a multivariate
normal distribution whereas we set empirical control limits as the upper 1% of the marginal distribution cor-
responding to the reference set. Furthermore, in the MVSPC setting, when the process is operating correctly,
different reference sets are expected to give the same PCA. But, in the context of drill cores different ref-
erence sets may give substantially different PCAs. If different reference sets do give different PCAs, this
is an indicator of differences between reference sets, and that could indicate differences in geometallurgical
properties.
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Figure 4. Histogram of uniform LBP features (left) and log transformed (right).
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Figure 5. Hotelling T 2 and SPE control charts with PCA model applied to all the images, coloured by
different clusters.

3 RESULTS AND DISCUSSION

The log transformed uniform LBP features were used so as to eliminate the peak in the LBP histograms (non-
uniform binary patterns), to avoid the other patterns category dominating the analysis. Also, the sum of the
counts for an image is constrained to equal the number of pixels in that image and taking logarithms removes
this linear constraint. Figure 4 is an example of a LBP histogram and log transformed LBP histogram. To
provide a contrast to the depth series analysis which takes account of the ordering of the images, particularly
when investigating the effects of different reference sets, we performed a K-means cluster analysis which is
not influenced by the order of the images. K-means clustering was performed to the log transformed uniform
LBP features with a chosen K value of 4. The number of clusters was determined based on elbow method,
silhouette coefficient and visualisation of images in each cluster. As noted above, the clustering takes no
account of the locations of the images along the drill core. The next stage in the analysis is to identify different
segments of drill core such that contiguous images in a segment are relatively similar and substantially different
from those in neighbouring segments.

A PCA model has been applied to the features of all the images, and the control charts are constructed based
on the first 20 PCs (Figure 5). Both of the Hotelling T 2 and SPE control charts suggest a shift in the mean
values around 350 meters, and SPE control chart also shows slight ”w” shape in the first half of the drill core.

To assess the sensitivity of the use of the reference group, a PCA model was fitted to each reference group.
The first 20 PCs were used to construct the control charts, colored by the 4 clusters (Figure 6). The upper 99%
quantile of the reference group was used as upper control limit, and is shown as red dashed line in the control
charts.

The control charts for the second half of the drill core appear concave (Figure 6a, Figure 6c and Figure 6d)
when using group 1 and 2 as reference data. However, this concavity was not evident in the SPE control chart
when group 1 was used as reference (Figure 6b). Notably, the control charts indicated the presence of two
distinct regimes that separated roughly mid-way along the drill core, a finding that was also supported by the
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(a) Group 1 as reference data.
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(b) Group 1 as reference data.
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(c) Group 2 as reference data.
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(d) Group 2 as reference data.
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(e) Group 3 as reference data.
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(f) Group 3 as reference data.
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(g) Group 4 as reference data.
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(h) Group 4 as reference data.
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(i) Group 5 as reference data.
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(j) Group 5 as reference data.

Figure 6. Hotelling T 2 and SPE statistics calculated using log transformed uniform LBP features, with
different groups as reference, coloured by 4 different clusters.
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clustering analysis. When group 3 was used as reference data, the Hotelling T 2 control chart was relatively
stable (Figure 6e), but the SPE control chart revealed curvatures in both the first and second half of the drill
core (Figure 6f), with the first half exhibiting a ”w” shape that suggested a change in the first quarter. Similarly,
both the Hotelling T 2 and SPE control charts indicated changes in texture every quarter along the drill core
in Figure 6g and Figure 6h when group 4 was used as reference. In contrast, the control charts for group
5 as reference data were not informative. The conclusions drawn from these observations were supported
by Table 1, which showed that the number of out-of-control images varied depending on the group used as
reference data, with groups 3 and 5 displaying relatively fewer out-of-control images compared to the other
three groups. Furthermore, it is worth noting that the SPE control chart, when using group 4 as a reference,
displays more outlying values compared to the Hotelling T 2 control chart.

Table 1. Number of out-of-control observations for Hotelling T 2 and SPE control charts, with different
renference data for PCA model.

Hotelling T 2 SPE Both
Group 1 Group 2 Group 3 Group 4 Group 5 Total

Group 1 2209 280 0 3 62 47 104 216
Group 2 1375 1801 0 1 233 575 273 1082
Group 3 131 262 15 13 1 1 2 32
Group 4 1741 1597 645 389 95 3 86 1218
Group 5 292 1177 58 70 24 50 5 207

Based on the results presented in Table 1, it is evident that the number of outlying images varies for different
reference data groups. Notably, the use of group 1 or 2 as reference data resulted in the absence of any
outlying images in group 1 detected by both control charts. Furthermore, the fewest outlying images were
detected when using group 3 as the reference data, indicating that this group has relatively higher PC scores
compared to the other groups. When using group 4 or 5 as reference data, a higher number of outlying images
were detected in group 1 and group 2 by both control charts. These findings suggest the presence of two
regimes that are separated by the midpoint of the drill core.

4 CONCLUSION

Overall, the control charts demonstrate substantial differences depending on the group used as reference data,
indicating changes in textural properties, particularly between the upper and lower halves of the drill core, but,
to a lesser degree, also at 190 m and 480 m.

There is no theoretical bases for the choice of using the first 20 PCs and five reference groups, and this could
be varied. Nevertheless, the results of this study provide a foundation for further research to explore the use of
gray-level co-occurrence matrix (GLCM) and convolutional neural networks (CNNs) for detecting changes in
drill core images, as they have also been shown to be effective in similar applications. A comparison between
LBP, GLCM, and CNN approaches provides valuable insights into the performance of each method and their
suitability for different types of image analysis tasks.
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