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Abstract: Drill core images provide information of the texture, structure, and mineralogy of the rock, which 
enables the use of drill core images to optimise downstream processes. The impact on downstream processes 
from particles of similar composition and mineralogy but different textures has been examined by many 
researchers. The application of local binary pattern (LBP) and gray-level co-occurrence matrices (GLCM) has 
been extensively studied by many scholars, and they have been demonstrated to be effective in lithology 
classification through machine learning techniques. More recently, convolutional neural networks (CNN) with 
transfer learning for feature extraction have gained attention and have also been proven as an effective tool. 
Currently, imaging- based data is primarily used in mining for inspection by geologists to support qualitative 
descriptions. There exists considerable scope for the use of multivariate statistical process control (MSPC) to 
evaluate imaging data, and an opportunity for the use of image-based data for the detection of subtle changes 
in rock texture and lithology. 

This study builds upon the study of Gu et al. (this volume) and seeks to compare the performance of three 
widely used feature extraction methods: LBP, GLCM and CNN, for change detection in optical drill core 
images using MSPC. The results for the GLCM and CNN are consistent with the LBP analysis, and similarly 
infer that there may exist a major change in lithology mid-way along the length of the drill core. The existence 
of these two main regimes is also supported by the K-means clustering analysis which is independent of the 
location of each image. Moreover, the GLCM features are less sensitive to the reference data used to construct 
the control charts. However, these control charts do show a peak around 160 meters, like the one shown in the 
control charts for CNN features. 
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1 INTRODUCTION

Drill core images provide reliable information for mineral exploration and resource characterisation. They
provide a visual representation of the geology and mineralization of a mineral deposit or exploration target,
and enable geologists to study the texture, structure, and mineralogy of the rocks present. The information
obtained from drill core images can be used to determine the quality and quantity of the ore, to estimate the
grade and recovery of the mineral, and to design and optimize the mining and processing operations. Moreover,
drill core images can help identify the presence of anomalous styles of mineralization, alteration, and other
features that are important for exploration and resource estimation. With the development of high-resolution
imaging technologies, such as digital photography, hyperspectral imaging, and X-ray computed tomography,
drill core images have become increasingly detailed and informative.

Tessier et al. (2007) implemented machine learning techniques to estimate rock mixture composition using
rock images for mill feed optimisation, illustrated with a case study of a highly heterogeneous nickel ore
system. They demonstrated that the compositions estimated from imaging are in good agreement with the
measured values, with correlation coefficients (R2) of 0.725, 0.903 and 0.844 for soft, medium and hard rock,
respectively. Furthermore, correlations between the ore textures and processing response to comminution
and/or flotation have been established. Nguyen et al. (2016) predicted parameters of a comminution process
using high resolution drill core images. Pérez-Barnuevo et al. (2018) used seven features extracted from
grey level co-occurrence matrix (GLCM) and four features from the grey level run-length matrix (GLRLM)
as inputs for multivariate discriminant analysis. The results showed significant impact of GLCM statistics
for textural classification with accuracy of 88%. The case study conducted on the Mont-Wright iron ore
deposit showed a linear relationship between inverse different moment (IDM, statistic for GLCM), short run
high grey-level emphasis (SRHGE, statistic for GLRLM) and iron grade, with the model explaining 76% of
the variance of the iron grade. Koch et al. (2019) compared 24 combinations of different textural features
extraction methods and different classification methods in their case study of the Aitik Cu-Au-Ag deposit,
northern Sweden. This, and other studies, have demonstrated the efficacy of using local binary pattern (LBP)
and GLCM as feature extraction methods in detecting, classifying, and identifying minerals within specific ore
deposits. However, these studies typically require an established drill core texture library as a prerequisite.

In the first part of our study (Gu et al., this volume), a novel machine vision approach was proposed for
detecting changes in drill core images using LBP features and multivariate process control, without human
intervention. The general strategy is:

• Take photographic images sequentially along the core.
• Summarise each image by a set of features.
• Calculate the principal component analysis (PCA) of the features, based on the correlation matrix, and

retain the principal components (PCs) accounting for 80% of the variance of the features. The PCA can
be based on either the entire sequence or segments of the sequence, referred to as reference group.

• Calculate Hotelling T 2 and SPE statistics from the PC values for each image, and plot these statistics
against image number.

The objective is to compare the performance of LBP with two other feature extraction methods, GLCM and
CNN, for change detection, as well as their robustness to noise and artifacts in the images.

2 METHODS

We used the same data as Gu et al. (this volume), which includes the details of the LBP. Brief descriptions of
GLCM and CNN follows.

2.1 Gray-level co-occurrence matrix (GLCM)

The GLCM is a widely used method for image texture analysis based on gray-tone spatial dependencies,
proposed by Haralick et al. (1973). The image comprises an array of r × c pixels. The gray tone scale
runs from 1 for white up to p for black. If the gray–tone value (gtv) of the pixel at position (x, y), where
1 ≤ x ≤ r, 1 ≤ y ≤ c is k, we write I(x, y) = k, where 1 ≤ k ≤ p. A GLCM is a p× p matrix with entries,
(i, j), proportional to the number of instances of pixel pairs in a specified relationship having gtv of i and j.
The relationship is defined by the offset, (∆x, ∆y), which indicates that the position of the pairing pixel to
the reference pixel is ∆x pixels down and ∆y pixels to the right. For example, (1,2) indicates one pixel down
and two pixels right relative to the reference pixel. The elements of the p× p GLCM matrix for an offset (∆x,
∆y), before normalisation (bn), are:
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GLCMbn(i,j) =
r∑

x=1

c∑
y=1

{
1, if I(x, y) = i and I(x+∆x, y +∆y) = j,

0, otherwise,
(1)

Then each entry in the GLCMbn is normalised to a probability p(i, j), by dividing by the sum of the counts,
to give a GLCM matrix P . The calculation of P for a 4 × 4 image with offset (0,1) is shown in Figure 1.

Figure 1. An example of the calculation of GLCM (Löfstedt et al. 2019).

Haralick et al. (1973) proposed 14 statistics of the GLCM as image features, the most often used are contrast,
homogeneity, dissimilarity, energy, entropy and correlation. We use these six statistics calculated for each of
four offsets, (0,1), (-1,1), (-1,0), and (-1, -1), giving 24 (6 features × 4 offsets) features for each image.

2.2 Convolutional neural network (CNN)

A CNN is a deep learning model for analysing image data, by learning hierarchical patterns through layers
of interconnected convolutional filters. We used VGG16 model (Simonyan & Zisserman 2014), which has
been pre-trained on the ImageNet dataset and achieved 92.7% top-5 test accuracy, with architecture shown in
Figure 2. The drill core images were resized to a fixed size of 224×224 pixels and CNN works with RGB
images. A thousand features are returned from the model, and the first four L-moments (Hosking 1990), mean,
L-scale, L-skewness and L-kurtosis, of these features are used for change detection.

Figure 2. The architecture of VGG16 model (Shi et al. 2018).

2.3 Change detection

We have a sequence of 5,982 images, and for each image, LBP, GLCM, and CNN features are calculated, with
size of 59, 24, and 4 features, respectively. The PCA using the correlation matrix is implemented to reduce not
only the dimension of the features, but also eliminate the correlations between the features, for each feature
extraction method. We define the value of PCj for image i as tij , and the variance of PCj is λj . Hotelling T 2

is defined as

T 2
i =

J∑
j=1

t2ij
λj

, for i = 1, . . . , 5982, (2)
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where J is the number of PCs. Large values of T 2 identify outlying observations. The squared prediction
error (SPE) statistic is an alternative indicator of outlying values, and is calculated as follows. We define the
features for image i as fik where k runs from 1 up to M , where M is the number of features for each feature
extraction method. We then project these M features onto the first J PCs,

SPEi =
M∑
k=1

(fik − f̂ik)
2, for i = 1, . . . , 5982. (3)

Both T 2
i and SPEi are plotted against image number, i, as is the custom for MVSPC. To assess the sensitivity

of the use of the reference group, a PCA model was fitted to each reference group. The upper 1% quantile
of the reference group was used as upper control limit, and is shown as red dashed line in the control charts.
The images are divided into five non-overlapping consecutive groups (i.e, in the first group i runs from 1 up to
1,196, in the second group i runs from 1,197 to 2,392 and so on).

3 RESULTS AND DISCUSSION

To provide a contrast to the change detection analysis which takes account of the ordering of the images,
particularly when investigating the effects of different reference sets, we performed a K-means cluster analysis
which is not influenced by the order of the images. K-means clustering was performed on the GLCM and CNN
features, with a chosen K value of 4, to be consistent with the LBP analysis (Gu et al., this volume). The PCA
models were implemented to the features of GLCM and CNN, with 4 and 3 PCs obtained, respectively, in
order to account for more than 80% variability in the original features.

The application of control charts on GLCM features indicates that they are less sensitive to the choice of
reference data when compared to LBP features. Moreover, the cluster analysis does suggest the presence of
two regimes that separate along half-way along the drill core (at ca. 350 m). There exists some slight concave
pattern for the second half of the drill core when using group 1 and 2 used as reference (Figure 3a – Figure 3d).
The absence of substantial differences between the control charts for GLCM features implies a reduced ability
to detect changes in texture along the drill core when compared to LBP features. Therefore, we may conclude
that LBP features are more effective than GLCM features in identifying changes in textures, at least in the
case of this particular dataset. It is noteworthy that the control charts generated consistently identified peaks
at approximately 160 meters along the drill core, regardless of the reference data used for PCA model fitting.
This observation may imply the presence of significant changes in the textural properties of the rocks at this
point.

Table 1. The number of out-of-control images using Hotelling T 2 and SPE control charts with different
groups as reference, for each feature extraction method.

LBP GLCM CNN
Hotelling T 2 SPE Hotelling T 2 SPE Hotelling T 2 SPE

Group 1 2209 280 69 49 17 405
Group 2 1375 1801 795 1471 661 883
Group 3 131 262 174 184 219 224
Group 4 1741 1597 2039 1968 1522 1509
Group 5 292 1177 18 22 119 117

The control charts for the CNN features were initially constructed using CNN features themselves. However,
the control charts yield highly inflated values, rendering the results uninformative. Consequently, four L-
moments were used to address this issue. The clustering analysis again shows two regimes which are supported
by the control charts. Notably, there are peaks at around 160 m for all the control charts, irrespective of
which reference data was used. This is consistent with the results returned from GLCM. Moreover, when
using group 1 and 2 as reference data, the images in the second half of the drill core stand out (Figure 4a
– Figure 4d), whereas they remained relatively stable when other groups are used as reference. When using
group 4 as reference, a greater proportion of images from the ∼ 200-300 meters segment are detected as
outliers, compared with other groups as reference.

Based on the analysis presented in Table 1, the results suggest that the number of outlying images detected by
Hotelling T 2 and SPE control charts are relatively consistent across most of the feature extraction methods.
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However, significant differences were observed for LBP features when using group 1 and 5 as reference, for
GLCM features when using group 2 as reference, and for CNN features when group 1 was used as reference.
These differences may be attributed to the variations in the underlying distribution of the feature vectors across
different reference groups. Specifically, the reference groups that exhibit higher variability in the feature space
may lead to higher detection rates of outlying images, which can be captured by both Hotelling T 2 and SPE
control charts.

4 CONCLUSION

Collectively, MSPC control charts work as clustering analysis for detection of changes in terms of segments
rather than single images, and our results demonstrate the effectiveness of this approach. Overall, the findings
suggest that the application of different feature extraction methods, in combination, can help to reveal distinct
patterns and characteristics in the data, even though the methods also show some common patterns. However,
the computational complexity should not be neglected; whereas LBP and GLCM provide similar levels of
complexity, CNN requires more time to compute even with the pre-trained CNN model. CNN features can be
further enhanced by additional training, which will give more detailed textural information, but require higher
performance computation. Moreover, the combination of clustering and control charts provides a comprehen-
sive approach for identifying and analyzing potential outliers and changes in the underlying structure of the
data. The insights gained from this study can aid in the interpretation of geological data and contribute to the
development of effective exploration strategies.
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(g) Group 4 as reference.
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Figure 3. Hotelling T 2 and SPE statistics calculated using GLCM features, with different groups as reference,
colored by 4 different clusters.
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Figure 4. Hotelling T 2 and SPE statistics calculated using CNN features, with different groups as reference,
colored by 4 different clusters. 327
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