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Abstract: The paper presents the results of a data-driven surrogate modelling effort to reproduce the results 
of a Computational Fluid Dynamics (CFD) model. The CFD model considered here simulates a scenario where 
air containing CO2 flows through a tube. A metal scaffold (that are highly selective in adsorbing CO2 from air) 
is placed inside the tube that absorbs CO2 from the fluid as it flows through. The CFD model computes two 
important quantities: (i) the amount of transportation (a measure of CO2 absorbed by the metal scaffold) and 
(ii) the amount of fluid mixing. Given the shape features of the metal scaffold as input, the CFD model (a) 
produces a 3D lattice filling part of it with the metal scaffold, (b) uses Lattice-Boltzmann equation to solve the 
CFD, and (c) compute amount of transportation and fluid mixing.  

CFD models normally requires solving partial differential equations across the grid making it a highly time-
consuming process. To reduce the computation time, we have investigated surrogate models for this CFD based 
on a machine learning (ML) method. The ML model takes as input the shape features of the metal scaffold and 
predicts amount of CO2 absorption and fluid mixing. The objective is to come up with a ML model that 
produces the above quantities with reasonably low error. ML models can produce the results much faster than 
CFD model. We investigated several ML models to find their effectiveness to produce reasonably accurate 
results for predicting the two quantities above. 

The data for training and testing the ML model was generated from the CFD based on different shape features 
of the metal scaffold. The underlying objective of the project was to produce an optimal design of the metal 
scaffold that maximises absorption (of CO2) and fluid mixing. The optimization was done using an evolutionary 
algorithm (EA). EA starts with a set (population) of random shapes and modifies the shapes over generations 
based on feedback from CFD. In each generation the CFD computes the absorption and mixing for each of the 
shapes in the population. The best of the shapes from the population goes through some transformations 
(crossover and mutation) to generate the population for next generation. The process continues until the 
optimization converges. The shape features and their fitness (absorption and mixing) of the population from 
the several generations are combined into one large dataset where the shape features are input, and the fitness 
values are target. This constitutes the data used for training and testing the ML models. Given a total of n 
generations, we trained ML models on data up to k–th generation and tested the model on the data from last n–
k generations. 

We have trained ML models separately for the two targets: amount of transportation and fluid mixing. The 
input features (i.e., properties of the scaffold) remain the same for both models. We trained and tested several 
machine learning models to produce this mapping between properties of the scaffold and the two targets. The 
ML models are: Multivariate Linear Regression, Support Vector Regression, Neural Network Regression, and 
Decision Tree Regression. The Decision Tree Regression performed best for our scenario. We present the CFD 
model, the data-driven ML based surrogate models, and some preliminary results in this paper. 
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1. INTRODUCTION 

Computational Fluid Dynamics (CFD) is an area of fluid dynamics where behaviour of fluid flow is modelled 
using numerical method and algorithms. Many real-world scenarios involving fluid flow requires testing under 
different physical phenomenon. CFD offers a cost-effective alternative to imitate the physical scenario in a 
mathematically simulated scenario and test the behaviour of fluid under different testing scenarios. However, 
due to computationally heavy, CFD models take large time to generate results even on high performance 
computing platforms. ML based surrogate models offer a faster alternative to CFD models if it can produce 
accurate predictions. In this paper, we explore some data-driven ML models to find their effectiveness in 
accurately emulating the CFD model. 

The CFD model considered in this paper is aimed at simulating a scenario where fluid air containing CO2 flows 
through a tube containing a metal scaffold. The metal scaffold is highly selective in adsorbing CO2 from air. 
The underlying objective of the project is the produce a design of the metal scaffold that maximises absorption 
and fluid mixing. The overall process is an iterative process. An evolutionary optimization method based on 
Genetic Algorithm (Katoch et al. 2021) iterates over generations producing different shape parameters. The 
shape parameters are taken as input by a bespoke geometry generator to produce a solid body with certain 
shape. A grid generator then takes the geometry and produces computational grid.  

The CFD model takes the computational grid as input and then solves the Lattice Boltzmann equations (Benzi 
et al. 1992) and computes two quantities – amount of transportation (a measure of absorption of CO2 by the 
metal substrate) and fluid mixing. Fluid mixing is required so we can get as uniform as possible deposition on 
substrate. These quantities act as a fitness function for the Genetic Algorithm (GA). GA starts with a population 
of random shapes and the CFD produces their fitness score. The next generations of shapes are modified based 
on the fitness values produced by the CFD and the process continues until the GA converges.  

The whole process is very time consuming. The idea of the ML exercise is to investigate if the mapping between 
the shape parameters and fitness values (transportation and fluid mixing) can be learned from the data produced 
over generations by the evolutionary algorithm framework. We have explored different ML models to find the 
mapping between shape parameters of the metal scaffold and the fitness values. The details of the underlying 
method and results are presented in the following sections. 

2. METHODS 

2.1. CFD modelling 

The CFD model considered in this study focuses on solving the steady-state velocity field for fluid flow within 
the long tube. This is done by solving the Lattice Boltzmann (LB) equations for fluid flow. The LB method is 
a microscopic model which can be shown to yield solutions equivalent to the well-known Navier-Stokes 
equations. The advantage here is that LB models treat complex shapes comparatively easily and is the method 
is highly parallelizable (both improving compute speed and accuracy). Once the velocity field has been 
determined, fictitious tracers are launched through the long tube. Their trajectory is determined by numerically 
solving a simple equation (dr/dt = v(r)), where r is the position of a tracer particle at time t and v is the 
corresponding velocity at this position). Many thousands of tracers are modelled to give a statistically 
meaningful sample, from which the quantities of interest (metal scaffold transport and fluid mixing) are 
determined. 

2.2. Surrogate modelling 

This section explains the method of developing a data-driven surrogate model for the CFD. As discussed in the 
previous section, an Evolutionary Algorithm (EA) optimizes the shape of the mixer metal scaffold over 
generations and the CFD model provides fitness values (mixing and transportation) for the shapes in that 
generation. Let the EA works on a population (number of alternative shapes in each generation) of size 𝑁𝑁. Each 
shape is described by a set of 𝑛𝑛 features 𝜔𝜔. The CFD produces two fitness values mixing (𝜎𝜎) and transportation 
(𝜌𝜌) for each of the 𝑁𝑁 shapes in that generation. Let, 𝝎𝝎𝑖𝑖𝑖𝑖 , 𝜎𝜎𝑖𝑖𝑖𝑖 and 𝜌𝜌𝑖𝑖𝑖𝑖  denotes the feature vector, mixing and 
transportation amounts respectively for the 𝑗𝑗-th shape in the 𝑖𝑖-th generation. If the EA converges on 𝑘𝑘–th 
generation, the EA and CFD generate the following: 
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Feature vector Mixing Transportation 

𝝎𝝎11 
𝝎𝝎12 
… 
𝝎𝝎1𝑁𝑁 
𝝎𝝎21 
𝝎𝝎22 
… 
𝝎𝝎2𝑁𝑁 

… 
… 
𝝎𝝎𝑘𝑘𝑁𝑁 

𝜎𝜎11 
𝜎𝜎12 
… 
𝜎𝜎1𝑁𝑁 
𝜎𝜎21 
𝜎𝜎22 
… 
𝜎𝜎2𝑁𝑁 

… 
… 
𝜎𝜎𝑘𝑘𝑁𝑁 

𝜌𝜌11 
𝜌𝜌12 
… 
𝜌𝜌1𝑁𝑁 
𝜌𝜌21 
𝜌𝜌22 
… 
𝜌𝜌2𝑁𝑁 

… 
… 
𝜌𝜌𝑘𝑘𝑁𝑁 

A total of 𝑘𝑘 × 𝑁𝑁 CFD runs generate mixing and transportation amount for 𝑘𝑘 × 𝑁𝑁 shape features as proposed 
by EA. This constitutes the data to train and test ML models. Given a set of feature vectors 𝝎𝝎11, … ,𝝎𝝎𝑚𝑚𝑁𝑁 up to 
𝑚𝑚-th generation, and corresponding mixing and transportation amounts 𝜎𝜎11, … ,𝜎𝜎𝑚𝑚𝑁𝑁 and 𝜌𝜌11, … ,𝜌𝜌𝑚𝑚𝑁𝑁 (as 
generated by CFD), we train two different ML models 𝑓𝑓𝑚𝑚 and 𝑓𝑓𝑎𝑎 for mixing and transportation separately. Let, 
𝜃𝜃𝑚𝑚 and 𝜃𝜃𝑎𝑎 be the parameters for the ML models 𝑓𝑓𝑚𝑚 and 𝑓𝑓𝑎𝑎 respectively. Given a set of inputs 𝝎𝝎11, … ,𝝎𝝎𝑚𝑚𝑁𝑁 and 
corresponding targets (mixing or transportations), an ML model aims to approximate a function to map the 
input to the corresponding targets such that cumulative error between the predictions and the targets are 
minimized and hence the optimal values of 𝜃𝜃𝑚𝑚 and 𝜃𝜃𝑎𝑎 are obtained as: 

 
𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑖𝑖𝑛𝑛
𝜃𝜃𝑚𝑚

�∑ �𝜎𝜎𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑚𝑚(𝝎𝝎𝑖𝑖𝑖𝑖)�∀𝑖𝑖,𝑗𝑗 � (1) 

 
𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑖𝑖𝑛𝑛
𝜃𝜃𝑎𝑎

�∑ �𝜌𝜌𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑎𝑎(𝝎𝝎𝑖𝑖𝑖𝑖)�∀𝑖𝑖,𝑗𝑗 � (2) 

Once the ML models 𝑓𝑓𝑚𝑚 and 𝑓𝑓𝑎𝑎 are trained on the first 𝑚𝑚 generations, the models are tested on samples from 
generations 𝑚𝑚 + 1 to 𝑘𝑘. The errors computed on the test set (unseen to the training process), indicates the 
generalizability of the ML models. The method for generating the ML models from CFD is presented in 
Figure 1. 

3. EXPERIMENTAL SETUP AND RESULTS 

In this paper we present the results on a particular family of metal scaffolds called HEXRAIN (Figure 2). These 
substrates are placed inside the tube through which the air flows. The objective of the evolutionary algorithm 
is optimising the design of such shapes to maximise CO2 transportation and fluid mixing. The shape of the of 
the HEXRAIN metal scaffold is controlled by 14 parameters (for instance, the distance between sub-elements, 
or the angle one element forms to a neighbouring one etc.). We use a shape generation process based on the L-
system method. The details of L-Systems are beyond the scope of the paper but interested readers can find the 
details in (Lindenmayer 1968). 

The genetic algorithm (the evolutionary algorithm) is a population-based method, using 16 individuals in each 
generation. An initial population of 16 individuals (representing substrate shape features), each represented by 
a vector of real numbers, is created randomly. The L-System is used to generate the shape represented by each 
parameter vector. The CFD system is then run to calculate the two fitness values for each shape – (a) CO2 
transportation, and (b) fluid mixing. After this initial population, the GA proceeds in the same way each 
generation. First, a new population of 16 individuals is created by combining the parameter sets of the current 
population. This is done by crossover (combining parts of two solution) and mutation (altering some parameter 
values). The process of generating the shapes using the L-system and calculating the fitness values using CFD 
is then repeated for the new population. Finally, the 16 individuals with the best fitness values are selected 
from the 32 individuals in the combined new and old populations. These 16 go on to the next generation, and 
the procedure repeats until no improvement in fitness values is seen. 
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Figure 1. Method for generating data-driven surrogate ML models for the CFD 

 
Figure 2. HEXRAIN shape metal scaffold/mixer (shown without hexagonal walls) 

A common technique to explore the parameter space effectively is to restart this procedure from a new random 
initial population. We performed seven restarts from random initial populations. We used data from all these 
seven runs of GA. For each run, we used the shapes generated over the successive generations of the 
evolutionary algorithm for training and testing of the ML based surrogate models. We combined the data from 
first 40 or so generations from each of the seven restarts of HEXRAIN shapes to train the model. We then 
combined the data from the following 36 or so generations from four restarts of HEXRAIN shapes to test the 
model. A good number of samples from both training and test set were unusable as those scenarios lead to 
blockages in the tube – a situation that needs to be avoided. Hence such shapes are excluded from training and 

Current population of 
shape vectors 

CFD 

Crossover 

Mutation 

Selection 

Mixing amount 

Absorption amount 

Shape vector Mixing amount Shape vector Absorption amount 

Initial population of shape vectors 

ML model 𝑓𝑓𝑚𝑚training ML model 𝑓𝑓𝑚𝑚training 

𝑓𝑓𝑚𝑚 𝑓𝑓𝑎𝑎 
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testing. We ended up using 3712 samples for training and 2216 samples for testing. Each sample in the data 
has 14 input features (shape parameters of the metal scaffold) and the target for each sample is (a) CO2 
transportation, and (b) fluid mixing. 

For training and testing, we have investigated several supervised machine learning models including 
Multivariate Linear Regression (Alexopoulos 2010), Support Vector Regression (Awad 2015), Neural 
Network Regression (Specht 1991), and Decision Tree Regression (Sammut et al. 2011). The methods are 
briefly explained bellow: 

• Multivariate Linear Regression (MLR): Given a set of 𝑛𝑛 input features 𝑥𝑥𝑖𝑖 for a sample, and 
corresponding target 𝑦𝑦 (where 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛), MLR expresses 𝑦𝑦 as a linear combination of the 𝑥𝑥𝑖𝑖 as 𝑦𝑦 =
∑ 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 . The 𝑎𝑎𝑖𝑖s are solved for based on an optimisation method to reduce the difference between 

prediction ∑ 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1  and the actual target 𝑦𝑦 for all the samples in the training set. 

• Support Vector Regression (SVR): SVR uses a kernel function to map the input vector 𝒙𝒙 to a set of 
features 𝒙𝒙′ and aims to find a hyperplane (𝑦𝑦′) that contains majority of the points within a margin of 
the hyperplane. The optimal hyperplane is sought for during the training process from the given data. 
Some commonly used kernel functions are: Linear, Non-Linear, Polynomial, Radial Basis Function 
(RBF) and Sigmoid function. 

• Neural Network Regression (NNR): NNR is a directed graph structure organised in layers and the 
edges are weighted. The first layer of the NNR is the input vector. Each node in the following layer 
computes a weighted combination of the inputs from the previous layer, passes through a non-linear 
function (sigmoid, tanh, Relu etc. (Sharma et al. 2020)) to produce the output of that node. The last 
layer contains one node that computes a weighted summation of the outputs from the second last layer 
and to produce the output of the neural network. The weights of the NNR are optimized such that the 
sum of error between predictions and actual targets from the training data are minimized. 

• Decision Tree Regression (DTR): Decision tree is a tree (a type of graph) where root node and other 
interior nodes represents one of the input features and the leaf nodes represents decision (regressed 
value). The building of the decision tree is an iterative process. First, the feature (/attribute) with 
highest variability (i.e., maximum entropy) among the samples is selected as the root node. The whole 
data set is then split into multiple smaller datasets depending on the range in which the attribute in the 
root node belongs. Each smaller dataset corresponds to an internal node. The variability/entropy 
calculation process continues the smaller data set to find a representative for the corresponding 
internal node. The process continues until certain criteria is satisfied. The average of the target values 
in each leaf node represents the decision of that leaf node. 

The ML experiments were conducted in Python. The following Python packages were used in the experiments: 
pandas, numpy, sklearn, and GaussianMixture. We computed two error metrices: Mean Absolute Error (MAE) 
and Root Mean Square Error (RMSE). Given an ordered set of targets 𝑦𝑦1, … ,𝑦𝑦𝑛𝑛  and the corresponding ordered 
set of predictions 𝑦𝑦′1, … , 𝑦𝑦′𝑛𝑛 , MAE and RMSE are computed as: 

 𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦′𝑖𝑖|𝑛𝑛
𝑖𝑖=1  and 𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀 = �1

𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦′𝑖𝑖)2𝑛𝑛
𝑖𝑖=1  (3) 

ML models operate on the principal that training and test data are independent but identically distributed. Non-
identical distribution will lead to poor performance on test set (Rahman et al. 2018). Figure 3 shows the 
distribution of features in the training and test set. The feature distribution is almost identical between two sets. 

  

(a) Training data (b) Test data 

Figure 3. Feature distribution in the data set in terms of box plot 
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We implemented several data-driven ML models to obtain mapping between the input shape features of the 
metal scaffold and the quantities produced from the CFD model i.e., CO2 transportation and fluid mixing. We 
trained and tested four models MLR, SVR, NNR, and DTR as explained above. We used linear_model, SVR, 
MLPRegressor, and DecisionTreeRegressor from scikitlearn package in python to train and test MLR, SVR, 
NNR, and DTR models respectively. Table 1 presents the errors in predicting transportation and mixing 
quantities by these ML models on the test set. Note that DTR produced the smallest error compared to all the 
other methods. The correlation plot between actual and predicted values (by DTR) for the two quantities in the 
test set are presented in Figure 4. As evidenced from the trend in both graphs, the predicted values aligned very 
well to the actual values in majority of cases. 

Table 1. Comparison of performance of different ML models to predict target variables in the test set 

 Transportation Mixing 

 MAE RMSE MAE RMSE 

MLR 18.61 115.05 13.23 58.80 

SVR 9.550 87.770 5.380 31.67 

NNR 9.580 59.030 6.560 28.66 

DTR 1.410 3.3600 0.710 3.050 

 
 

 

 

 
(a) Transportation (b) Mixing 

Figure 4. Prediction performance of decision tree on test data 

4. CONCLUSIONS 

In this paper we have presented a data-driven surrogate ML modelling approach to a CFD to accurately predict 
two quantities: transportation (of CO2) and fluid mixing. We trained and tested four different ML models 
including multivariate linear regression, support vector regression, neural network regression, and decision tree 
regression. Decision tree regression produced best results for both targets. These results are preliminary and 
more needs to be done in the future. The parameters of the learning models were not optimised, and we need 
to investigate this in future. The results presented in this paper are based on only one family of shapes 
HEXRAIN and we will investigate other family of shapes in future. We also need to investigate if we can 
transfer learn from models trained on one family of shapes and apply on another. Finally, the current approach 
is purely data driven and does not consider the underlying physics. In future we aim to investigate Physics 
Informed Neural Network (PINN) to incorporate underlying physics into the learning process. 
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