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Abstract: The paper presents an analysis on how machine learning models can be used to extract 
information from indoor movement data in an assembly line. An Indoor Positioning System (IPS) is commonly 
used to track workers, moving objects and vehicles at indoor venues where GPS is not effective. Movements 
happen within an assembly line as certain sets of work activities are performed (e.g., delivering assembled 
units from one work bench to another, reworking at a work bench and transporting a trolley from one place to 
another) and anything beyond that can be considered as anomalous. 

A computer assembly line was simulated and the movement trajectories of five workers were generated to 
perform the following activities: working at their own station, moving between different workstations, helping 
at another work station, working at storage and moving to a storage zone. We then developed a set of machine 
learning models to investigate how accurately these behaviours can be detected. 

The machine learning pipeline for indoor tracking data involves:  

(a) segmenting worker trajectories using Self–Supervised Learning (SSL). SSL is a machine learning process 
where a model is trained to learn one part of the input data from another part without the use of manually 
acquired labels. SSL is used to find the change points of the trajectories (i.e., used as segment boundaries) 
by training a model to predict the future interval of a trajectory from its temporally adjacent past window. 

(b) classifying trajectory segments (i.e., sub-trajectories) into different categories of worker behaviour. We 
investigated different supervised machine learning models to learn from the labelled segments. 

(c) estimating the state of the assembly floor based on the inferred worker behaviour. The state provides a 
wholistic view of the factory floor including the collective behaviour of workers. We used a clustering 
approach to identify the dominant states (joint activity) of the factory floor. 

We received some promising results from our analysis. We present the methods and results in detail in the 
paper. 
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1. INTRODUCTION 

Moving objects leave characteristic signatures in their spatial trajectories that can be used to understand their 
activity or behaviour (Baumgartner et al. 2022). Such insights can be helpful in many applications: surveillance 
at airports, understanding worker efficiency in assembly lines and detecting illegal fishing activities in oceans. 
Whilst several methods have been developed for analysing different types of trajectory data, this paper focuses 
upon analysing the movement data acquired with an Indoor Positioning System (IPS). Technologies like IPS 
(Farahsari et. al. 2022) were developed to estimate the spatial location (𝑥𝑥,𝑦𝑦) of an object in an indoor 
environment (at time 𝑡𝑡) since Global Positioning System (GPS) do not work well in such environments. The 
underlying technology behind IPS can be based on vision (MoCap (Delamare et al. 2020)), wireless (UWB 
(Delamare et al. 2023)), or magnetism ((Angelis et al. 2015; Blankenbach et. al 2010)). Irrespective of the 
underlying technology, IPS captures a sequence of spatial positions (𝑜𝑜𝑖𝑖 , 𝑥𝑥,𝑦𝑦, 𝑡𝑡) of a moving object 𝑜𝑜𝑖𝑖 , which is 
known as its trajectory. Whilst GPS based trajectory analysis for behaviour classification (Dunne et al. 2017) 
and anomaly detection (Datlıca et al. 2021) is very common in the literature, IPS based trajectory analysis is a 
relatively new area. GPS is commonly utilised over larger spatial areas than IPS, however, when deployed, 
both technologies can often exhibit similar scales of measurement error. Consequently, as the impact of noise 
can be more significant with IPS based analysis, different methodologies may be required. 

In this study, we aim at identifying how IPS based trajectories can be utilised to infer meaningful information 
about the assembly floor. As an example, identifying workers who are frequently searching for misplaced items 
or tools could be used to identity operational inefficiencies. Similarly, discovering the persistence reworking 
of manufactured products that fail to pass quality checks could also be used to alert of potential production 
issues. Therefore, inferring such activities (and others) from the movement of workers could help to identify 
bottlenecks within the manufacturing process and assist in developing appropriate management policies for 
optimizing productivity and efficiency (Gyulai et al. 2019). 

A simple use case for method development was considered, an indoor computer assembly line. We simulated 
a scenario where a set of workers assemble computers from separate parts. Trajectories of the workers were 
generated as they moved between different workstations, storage areas and rework benches. An analytical 
pipeline is proposed to infer state information based on worker trajectories and is comprised of: (a) a 
segmentation of trajectories based on Self-Supervised Learning (SSL), (b) a supervised classification model to 
classify segments into categories of worker behaviour, and (c) a state estimation of the assembly floor based 
on these behaviour categories. 

The following are the key contributions of this paper: (a) a computer assembly line was simulated and synthetic 
trajectory data was generated based on probabilistic logic programming, (b) a self-supervised learning (SSL) 
method was adapted to segment IPS trajectory data, (c) an ML framework was proposed to infer worker 
behaviour, and (d) an approach to infer the factory floor state from (b) and (c) was demonstrated. 

Trajectories are time sequences of spatial co-ordinates; we use SSL to train a short time interval of a sequence 
to predict the next contiguous interval. Larger prediction errors can be associated with statistical changes in 
the trajectory that correspond to the segment boundaries used for trajectory segmentation. Each segment is then 
classified as a particular behaviour using a supervised behaviour classification model that has been trained on 
a set of labelled segments. The collective behaviour of the workers represents a state of the assembly floor, and 
we use a clustering method to find the dominant states of the floor. We present these methods and the results 
obtained on the synthetic data set in the following sections. 

2. DATA SET 

We simulated an indoor assembly line scenario where computers are assembled from different parts. There are 
six workbenches and one storage area in the computer assembly line. Figure 1 presents different spatial zones 
representing the work benches and storage area on the work area grid. Five workers with dedicated duties are 
assigned to different work benches. The computer assembly workflow is presented in Figure 2. Worker 1 
assembles the power unit and casing at WB 1 and delivers to worker 2 at WB 2. Worker 2 attaches the mother 
board and other necessary cards (e.g., graphics, sound card etc.) to the component prepared by Worker 1 and 
delivers them to worker 3 at WB 3. Worker 3 installs the software at WB 3 and passes it on to worker 4 at WB 
4. Worker 4 tests the system as part of a quality check at WB 4. Worker 4 fixes any issues at WB 5 arising 
from the testing and delivers the final product to worker 5 at WB 6 who does the packaging. Workers 
occasionally go to a storage area to bring in extra parts. The assembly process is sequential in nature. Hence, 
the workers at later workbenches help other workers who commence their work earlier in the workflow. 
Similarly, workers who commence working earlier, finish their assembly tasks earlier. They help workers who 
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are responsible for assembly activities at the later workbenches. A total of three computers were assembled 
and one of them was made to rework. 

 

 
 

 

Figure 1. Different work areas/zones of the synthetic 
computer assembly data set where workers spend most 

of their time during the work shift 

 Figure 2. Workflow in the computer 
assembly line. Arrows indicate how partially 
assembled components move between work 

benches 

The movement between benches are generated by simulation. We implemented a general method that allowed 
us to automatically generate trajectories from a list of worker activities of given durations and locations as 
specified in a workflow. The activities are high-level properties such as “working at WB i”, and “restock from 
storage area”. These activities are operationalized by means of probabilistic logic programs. In these programs, 
probabilities are used to express, broadly speaking, a rate of change between locations (somewhat reminiscent 
of a Poisson process). This mimics the occasional worker movements for helping a colleague. The logic 
programs are generative and can be sampled to obtain, in a first step, the coarse waypoints of the result 
trajectory. In a second step, the coarse waypoint planning is refined into absolute coordinates with an event 
rate of 1Hz. To ensure realism, locations are changed at a typical walking pace of 1.3m/sec, and random 
perturbations are added for small worker movements at workstations and for slightly non-optimal movements 
along paths which simulates avoiding obstacles and collisions with other workers. We use probabilistic logic 
programs for that as well. All programs are executed in a probabilistic extension of our logic programming 
system Fusemate (Baumgartner, 2021). 

3. MODELLING 

3.1. Trajectory segmentation 

To model the spatial trajectories of workers, which represent worker’s movement across the assembly line, 
they must be segmented into a sequence of sub-trajectories. Time Series Change Point Detection (TS–CP2) 
(Deldari et al. 2021), a self-supervised learning method, was used for segmentation. First, a sliding window 
analysis was performed on trajectories to form pairs of temporally adjacent windows at each time step. The 
pairs of short-time windows were then passed through the encoders and projected into a low dimension 
embedding. 

TS–CP2 (Figure 3) is a Siamese network architecture comprised of a pair of identical encoders. The encoder 
used by TS–CP2 is a neural based sequence model, the Temporal Convolutional Neural Network (TCNN). The 
architecture is trained using a contrastive learning cost function, infoNCE, where the cosine similarity between 
a positive sample pair is contrasted against the mean cosine similarity of a set of negative sample pairs. The 
positive sample pair is composed of the embedding of an anchor window and the embedding of a temporally 
adjacent future window. Whilst the negative sample pairs are comprised of the same anchor embeddings (as in 
the positive pair) and a set of embeddings from randomly selected windows that are temporally distant to the 
anchor. By minimising the infoNCE cost function, the network is trained to push together the pairs of positive 
samples (consecutive time intervals), whilst simultaneously, push apart the pairs of negative samples 
(temporally distant intervals) within latent space.  

Once the network architecture is trained, an equivalent sliding window analysis is performed with the test data. 
Positive sample pairs are constructed and then passed through the encoder pair. A detection function is formed 
by computing the cosine similarity between positive sample embeddings at each time step. The local minima 
within the detection function are found with a valley picking algorithm and those with a cosine similarity less 

 

Storage Put casing, Power unit 
together - WB1 

Installs mother board, 
cards – WB2 

Software 
Installation – WB3 

Packaging - 
WB6 

Rework - 
WB5 

Testing – 
WB4 
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than a specified threshold are estimated as the change points. These change points are then used to partition 
trajectories by leveraging them as the segment boundaries. 

3.2. Behaviour classification 

We formulate the behaviour classification task as a supervised learning problem and apply ML classifiers to 
model the relationship between features of trajectory segments and behaviour of the worker pertaining to each 
segment. We first prepared the input-output pairs for the segments belonging to each trajectory. The input data 
consisted of 10 features that reflect the worker’s homogeneous behaviour within the segment. These features 
included the duration of the segment, the cumulative distance between consecutive spatial points within the 
segment, the two end points of the segment, the number of unique spatial points within the segment, the spatial 
area where the work spent the highest proportion of time and the duration of stay in that area. Moreover, the 
output of each segment was a class label manually annotated with the worker activity during the segment. 

 

Figure 3. Using the TS–CP2 
architecture for trajectory 
segmentation. The Siamese 
network is trained with self-
supervised learning. Trajectories 
are segmented by passing 
temporally adjacent windows 
through the Siamese network and 
computing the cosine similarity 
function. Change point detection 
is applied to extract segments 
(by finding local minima in the 
cosine similarity function). 

The combined set of feature-label pairs from the trajectories were then fed to the classifier models. We adopted 
a set of complementary Machine Learning (ML) models with different pattern learning capabilities that include 
k–Nearest Neighbour (kNN), Naive Bayes (NB), Logistic Regression (LR), Decision Tree (DT), Support 
Vector Machine (SVM), Neural Networks (NN), Random Forest (RF), and Gradient Boosting (GB). The final 
two classifiers (RF and GB) are based on an ensemble technique that trains multiple base learners and combines 
their outputs to improve the generalisation capability of the classifiers. In addition, we applied a voting–based 
ensemble classifier (Voting) which included all eight classifiers as its members and combined their outputs 
based on the consensus amongst the members. This was done to attempt to reduce the over-fitting problem and 
subjective bias associated with individual classifiers. 

3.3. State estimation 

State represents a wholistic view of the factory floor – a representation of some form that conveys what’s 
happening on the floor. A floor state called worker activity is defined i.e., who is doing what at a given time 
segment. It is represented as a vector 𝒂𝒂𝑡𝑡 = (𝑎𝑎1,𝑡𝑡 , 𝑎𝑎2,𝑡𝑡 , … ,𝑎𝑎𝑛𝑛,𝑡𝑡) where 𝑎𝑎𝑖𝑖,𝑡𝑡 represents the activity of worker 𝑖𝑖 at 
time segment 𝑡𝑡. 𝒂𝒂𝑡𝑡 represents the state of worker activities in the floor at time 𝑡𝑡. Given, activity vectors over 
time 𝒂𝒂1,𝒂𝒂2, … ,𝒂𝒂𝑇𝑇, we can cluster the vectors into 𝑘𝑘 groups. The centroids of the 𝑘𝑘 groups will tell us the most 
observed worker behaviour patterns (states) on the floor. We have adopted k–mode clustering algorithm 
(Miguel et al. 2013) to identify the clusters. k–mode clustering is designed to work on categorical attributes 
(activity class label in this case). The cluster centroids are randomly initialized, and an iterative process is 
followed to update them until convergence.  

4. RESULTS AND DISCUSSION 

4.1. Trajectory segmentation 

The TCNN used by the TS-CP2 architecture (detailed in Section 3.1) is composed of four convolutional neural 
networks (CNN) layers with dilation rates of 1, 2, 4 and 8, respectively. Each CNN layer is composed of 32 
filters with a kernel size of 2. The projection head (i.e., mapping the TCNN output into a lower dimension 
space) is a multi-layer perceptron network with a feature dimension of 16. The architecture is trained using the 
Adam learning algorithm (initialized with a learning rate of 0.001) with a window size of 16 seconds with 50% 
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overlap and a batch size of 32. The cosine similarity function is computed between the embeddings of 
consecutive time windows. The threshold used to detect change points from the metric function was set to 0.9.  

A 5-fold cross–validation was performed to segment worker trajectories. The TS–CP2 architecture was self-
trained upon the trajectories of four workers and then used to segment the trajectory of the remaining worker. 
This process was repeated five times so that each of the worker’s trajectories were segmented once. Figure 4 
shows an example of the segmentation results obtained with the trajectory of Worker 5.  

Table 1 presents a summary of the segmentation results of the five workers. The TS–CP2 algorithm identified 
277 segments from the trajectories of the five workers. These segments were manually labelled with five 
activity classes that reflected the basic working and collaborative behaviour of workers; such behaviours may 
assist in analysing the performance of a manufacturing system. For example, the segments associated with the 
‘work at storage’ and ‘moving between storage and WS’ classes can be utilised to identify the proportion of 
time that workers spent acquiring new supplies or finding tools. Likewise, segments with labels ‘work at own 
WS’ and ‘work at other WS’ can be used to identify the time (or proportion of time) that a worker spends 
completing their assigned tasks and collaborating with other workers. This information may help increase the 
production efficiency of a system by identifying resourcing issues and bottlenecks within production. 

A comparison of the segments associated with the activity classes (and their cumulative duration) indicate that 
whilst workers spent a reasonable proportion of their working day completing assigned tasks at their 
workstation (35%), they spent approximately half of their working hours (50.6%) at the workstations of other 
workers. This is expected, given substantial worker collaboration was necessary due to the interdependencies 
between assembly tasks (Figure 2). Workers were required to interact with other workers during assembly and 
were also expected to assist other workers with tasks once their own tasks were completed. Moreover, workers 
spent approximately 11% of their working hours moving between a WS and storage area to either restock 
workstation supplies or to find missing tools. With respect to the five activity classes, the workers spent the 
lowest proportion of their time (3%) moving between workstations. 

Table 1. Summary of trajectory segmentation results  

 

Activity class Segment 
Count 

Duration 
(sec) 

work at storage 28 2673 

work at own WS 60 9253 

work at other WS 133 13225 

moving between WS 44 771 

moving between storage and WS 12 175 

 
Figure 4. Segmentation of the movement 

trajectory of worker 5 using the TS-CP2 method 
(segments represented with different colours)  

 

4.2. Behaviour classification 

To evaluate the performance of the ML classifiers for activity classification, weed consider two standard 
metrics: the accuracy and weighted f-score. Accuracy refers to the percentage of correctly classified examples. 
F–score is a suitable measure for classification problems with imbalanced classes as ours and defined as the 
harmonic mean of precision and recall. Taking the class imbalance into account, we computed the weighted 
f–score, i.e., computed the F–score for each class separately, and the computed the average weighted by the 
number of instances in each class. Both metrics have ranges 0 to 1, where 0 and 1 indicate the least accurate 
and the most accurate models respectively.  

The accuracy of the classifiers was computed using 5–fold cross validation, where the dataset was split into 5 
non-overlapping subsets (called folds) of equal size. Each classifier was then built five times – each time the 
training was performed upon four subsets of the dataset and testing was performed on the remaining subset. 
The evaluation showed that the GB, RF, and NN classifiers achieved the highest classification accuracy in 
terms of both metrics, with GB being the most accurate of all the classifiers. The accuracy and f–score for the 
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three top performing classifiers were in the range of 0.77-0.83 and 0.76-0.83, respectively. The Voting and 
SVC classifiers were next in the ranking with similar accuracies of 0.75 and 0.73, and f-scores of 0.73 and 
0.71. The k–NN and NB offered the lowest classification accuracies of 0.62 and 0.49, respectively. In addition, 
a comparison of the classification performance of individual worker trajectories (Figure 5) showed a similar 
trend; in most cases, the GB and RF were the top performers, followed by the Voting, SVC, and NN classifiers. 

The experiment indicated that 3 out of the 5 top performing classifiers were based on ensemble techniques. For 
example, the RF combined multiple base learners of the same type (DTs) – each trained separately with a 
different subset of input data based on bootstrap sampling. GB trained multiple base learners sequentially to 
make them complement each other (each base learner attempts to minimize the errors of the previous leaner), 
whilst the Voting model combined several types of base learners based on soft or hard voting. Hence, ensemble 
classifiers help to diversify the learning process compared to standalone classifiers. The performance variance 
of the ensembles across different trajectories were also relatively lower compared to the standalone classifiers 
(Figure 5(f)). The superior performance of these ensemble-based classifiers can be attributed to their greater 
robustness to over-fitting and better generalisation performance. 

(a) 
 

(b) 
 

(c) 

(d) 
 

(e) (f) 

Figure 5. Performance of the classifiers on all trajectories: (a) to (e) accuracy and f-score for workers 1 
to 5, respectively, (f) variations of accuracy and f-score for classifiers across the trajectories 

4.3. State estimation 
State represents a wholistic view of the factory floor at a given point in time. We consider the joint activities 
of all the workers at a given time to present the state of the factory floor. We use the activities predicted by the 
ML model for this purpose. To understand the dominant states, we cluster the joint activities of workers. The 
input to the clustering algorithm was a two-dimensional matrix where each row represents the activities of the 
five workers at a given time. We used the k–mode clustering algorithm (Miguel et al. 2013) to find the centres 
of the ten clusters from the data. Each cluster centre represents the most commonly occurring joint activity in 
that group. Table 2 presents the ten cluster centres (ten most observed states or dominant states) in the computer 
assemble data set and the frequency of their presence as percentage. In the simulated data set, the workers 
either work at their workstation or help someone at another workstation. Workers also go to the storage areas 
to pick up component parts. Worker 5 spent more of their time in storage areas during the simulation. The 
states presented in Table 2 clearly reflects how things were defined in the simulation. This is a validation of 
the results produced by the trajectory segmentation and activity classification methods. 
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5. CONCLUSIONS 

We presented a pipeline of ML methods to generate insights from indoor movement trajectories in the context 
of a manufacturing assembly line. We simulated a scenario to mimic the operations of a computer assembly 
line and generated indoor trajectories of the workers. A self-supervised learning method was adopted to 
segment the trajectories. Several ML classifiers were then applied to the segments to infer the worker activity. 
Finally, a k–mode clustering algorithm was applied to generate a joint activity state of the factory floor. The 
state estimation results conformed to the underlying storyline of the assembly process. In the future, we aim to 
develop machine learning models to infer activity classes at a higher semantic level (e.g., searching, 
collaborating behaviour etc.). 

Table 2. Centroids of the 10 clusters representing joint activities of workers 

Cluster 
ID 

Occurrence 
Percentage 

(%) 

Cluster Centroid [Concurrent activities of 5 workers] 

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5 

1 18.37 work at own WS  work at other WS  work at own WS  work at other WS  work at storage 
2 15.2 work at other WS  work at other WS  work at other WS  work at other WS  work at other WS 
3 14.75 work at other WS  work at own WS  work at own WS  work at other WS  work at other WS 
4 11.66 work at other WS  work at other WS  work at other WS  work at own WS  work at other WS 
5 14.4 work at other WS  work at own WS  work at other WS  work at other WS  work at other WS 
6 9.07 work at own WS  work at other WS  work at other WS  work at other WS  work at other WS 
7 1.48 work at storage  work at other WS  work at other WS  work at other WS  work at other WS 
8 8.39 work at own WS  work at storage  work at other WS  work at storage  work at other WS 
9 4.87 work at other WS  work at other WS  work at own WS  work at own WS  work at own WS 

10 1.81 work at own WS  work at storage  work at other WS  work at other WS  work at storage 
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