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Abstract: Planning operating theatres and scheduling surgeries play a crucial role in hospital management. 
Operating theatres generate the most revenue for hospitals while demanding significant resources. This study 
investigates the optimal plan for flexible operating rooms (ORs) as a shared resource between elective and 
emergency patients. Elective operations might be planned weeks or months in advance. An emergency 
operation, on the other hand, must be performed as soon as possible. In this study, the uncertainty in parameters, 
such as emergency arrivals and surgery durations, has been considered. Based on the historical data obtained 
from a local hospital in Australia, we fitted lognormal distributions to surgery durations and Poisson 
distributions to emergency case arrivals. A stochastic programming model is developed to optimise the 
assignment of selected elective patients to surgical blocks considering the emergency arrivals with the objective 
of minimising the total cost of conducting or postponing surgeries and overtime. The surgical blocks are 
obtained from a master surgery schedule (MSS) which is determined at the tactical level of OR scheduling for 
several months. Each block is combinations of weekday/time, surgical specialty, and ORs. To distinguish the 
patients on the waiting list, a priority factor has been determined for each patient considering their surgical 
specialty, their actual waiting time, and their urgency level. Emergency patients have higher priority compared 
to the elective case with the same attributes. To preventively manage the random arrivals of emergency cases, 
most of the literature applied a Break-In-Moment (BIM) methodology in which finish times of surgeries in 
blocks are distributed in a way that maximises the insertion opportunities for emergency case arrivals. 
However, this methodology cannot be considered as a highly responsive-preventive methodology when the 
lengths of surgeries appear to be long as it may reduce opportunities for emergency case insertions.  

The proposed solution in this paper considers buffer time in each surgical block as a preventive methodology 
for emergency case arrivals. These buffer times can be divided into several parts and can be inserted into the 
plan every few hours, or they can be used as a whole time at the end of block time. In this paper, at first, we 
run the model deterministically to obtain good estimates of buffer time for each block. Then we run the model 
stochastically using the buffer times from the deterministic model and the random data obtained from 
distribution functions of the random parameters. By considering this scenario as a base, varying the buffer 
times and solving each scenario stochastically, we found that increasing the amounts of buffer times did not 
change the objective function significantly, however reducing them changed the objective function noticeably. 
Based on this, solving the model deterministically at first can give us a good estimation of buffer time for 
preventive scheduling for emergency case in flexible ORs.  
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1. INTRODUCTION 

Hospitals worldwide are under pressure to provide the best medical services to an increasing number of patients 
in reasonable lengths of time and with a limited set of resources (Fugener et al. 2014). Operating rooms (ORs). 
often constitute the majority of patient flow and are perhaps one of the most profitable areas of the hospital. 
OR scheduling problems are determined by a variety of objectives, constraints, and uncertainty linked to 
various parameters (Jebali and Diabat 2015; Marques and Captiva 2017; Neyshabouri and Berg 2017; Calegari 
et al. 2020). In reality, OR scheduling problems are frequently far more complex than many of the models 
proposed in the literature. Previously discussed problems are frequently simplified versions of real-world 
problems, while several constraints and functional objectives have been neglected. For example, uncertainty, 
which is inherent inreal-world problems, has been often neglected (Molina-Pariente et al. 2015). These 
challenges demonstrate the need to use high-level methodologies in solving real-world OR scheduling 
problems. In this paper, we solve an elective surgery planning problem in flexible ORs. By flexible ORs, we 
mean that the OR can be shared between elective cases and emergency cases whenever they show up. The 
scheduling of elective cases may begin from weeks or months in advance. However, emergency cases who 
arrive randomly, must undergo surgery, often on the same day. In this study, we assume that at the beginning 
of each week the OR manager ranks the patients on the waiting list, with the help of surgeons, based on their 
needed specialty, their urgency level, and their time spent on the waiting list. Then he/she allocates the highest 
ranked patients to their needed specialty blocks (that is, combinations of ORs, specialties and date/time slots) 
to undergo surgery during the next week considering the buffer time which has been previously reserved for 
random arrivals of emergency cases in each block. Our objective in solving this problem is to minimise the 
total cost caused by performing or postponing surgeries and over-utilisation of surgical blocks. The inherent 
randomness in lengths of surgeries and emergency cases arrivals are also considered. The problem studied in 
this paper is surgery scheduling at the operational level with the assumption that the Master Surgery Schedule 
(MSS) from tactical level is already available. 

2. LITERATURE GAP 

The literature on relevant studies shows that in most similar surgery scheduling problems, the initial elective 
surgery schedule is developed without any preparations for future emergency arrivals. Emergency surgery 
patients should be operated on in a limited time, depending on their urgency category. Nevertheless, without 
any preparations, there will be no guarantee that delayed access to ORs can be completely avoided due to the 
unpredictable nature of emergency arrival patterns and the uncertain length of surgeries. As a result, it is critical 
to proactively prepare for possible future emergency arrivals. In preventive planning, some of the studies 
considered developing an initial schedule, in which completion times of elective surgeries are distributed in a 
way that maximises opportunities for emergency case insertions. After a certain elective surgery is completed, 
an emergency OR access is possible. This method is called Break-In-Moment (BIM) (Vandenberghe et al. 
2019). However, this type of scheduling is insufficient for some specialities if all elective surgeries are 
anticipated to take a long time. As can be seen in Figure 1, there are circumstances in which BIM-based 
preventive scheduling will not respond quickly enough. Even though the emergency surgery is scheduled to be 
inserted in the first available operating room (OR) once it arrives, as shown in Figure 1 (b), the waiting time 
limit can be easily violated, and it may get the situation more severe for emergency cases with higher urgency 
level who have shorter waiting time limits to undergo surgery. In this situation, it is recommended that on the 
day of surgery, some buffer times be reserved in initial schedule to make it easier for ORs to accommodate 
emergency arrivals. The consideration of these buffer times will help minimise the risk of surgical delays due 
to emergency patient arrivals. Creating and distributing buffers in the original schedule allows us to construct 
a schedule that is both practical and very responsive. The buffer times can be divided into several parts and be 
inserted every few hours (Figure 2) or they can be used as a whole part at the end of each block times. 

Based on Figure 2, if the buffer time is distributed in the blocks and the operating room is empty during the 
buffer times, this provides an opportunity for emergency patients to enter faster and reduces their waiting time 
compared to Figure 1 (b) (The red horizontal line indicates the waiting time for emergency patients.) This is 
beneficial for situations where surgeries are too lengthy. 

As in our case study the number of emergency cases cancelled due to lack of OR time is high. On the other 
hand, since the most urgent category of emergency cases required treatment within the first hour after arrival, 
it was necessary to consider buffer time in at least one surgical block every hour to ensure timely treatment. In 
this case, the total buffer time obtained can be distributed during the OR opening period. The BIM methodology 
may provide enough insertion opportunities in some cases, eliminating the need for dividing buffer time. 
However, determining these, requires further study. 
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3. PROBLEM DESCRIPTION 

This study aims to find the optimal surgery schedule at a hospital that has 𝐵𝐵 ∈ {1,2, … } available surgery blocks 
over the planning horizon of T days (here 𝑇𝑇 = 5 representing a week without the weekend). The MSS has each 
surgical block 𝑏𝑏 ∈  [𝐵𝐵]: = {1, . . . ,𝐵𝐵}  allocated to an OR and to one surgical speciality with a regular length of 
time (𝑅𝑅𝑅𝑅𝑏𝑏). The time length of 𝑅𝑅𝑅𝑅𝑏𝑏 for each block b is normally long enough that several operations can be 
conducted during that time. It should be noted that for the same speciality, several blocks may exist within a 
cycle of the OR plan (a week). The operating room capacity is divided between two competing surgery 
categories: a known number (𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) of elective procedures that must be scheduled beforehand (for example, at 
the beginning of the week) and a random number of emergency cases that must be conducted on the day of 
arrival. Each elective case (𝑖𝑖 ∈  𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) has a specific surgery specialty, and throughout the planning horizon, it 
is possible to allocate them to any of the blocks pre-assigned to their specific surgical specialty. There are costs 
related to conducting or postponing surgery for each elective and emergency case (that is, cost of postponing 
the surgery to the next available cycle). We imagine that patients are allocated to a dummy block (𝑏𝑏′ ∉ [𝐵𝐵]) if 
they are not scheduled for any of the surgery blocks within the current cycle. 

Let the costs of conducting and postponing surgery be denoted by 𝑐𝑐𝑖𝑖𝑖𝑖  and 𝑐𝑐𝑖𝑖𝑏𝑏′, respectively. Hence, we assume 
that for any 𝑏𝑏 ∈  [𝐵𝐵], 𝑐𝑐𝑖𝑖𝑏𝑏′ > 𝑐𝑐𝑖𝑖𝑖𝑖  . Also, the cost of allocating a surgery to a block is dependant to its specialty 
type. The length of an elective procedure (𝑑𝑑𝑖𝑖) is a random parameter which depends on its specialty 
type. Emergency surgeries arrive randomly, and their durations are also random. The costs and lengths of 
emergency surgery cases are also dependent on their surgical specialty. To compare the costs of emergency 
and elective surgery cases, the emergency cases often have higher costs (for both conducting and postponing) 
(Haider et al. 2015). To make a highly preventive schedule for emergency arrivals, we consider a predefined 
buffer time capacity for emergency cases besides the capacity for elective cases in each block (denoted by 
𝐵𝐵𝐵𝐵𝑏𝑏). The exact determination of buffer time is highly important, since overestimation of it may reduce the 
capacity for elective cases, and in contrast, underestimation of it could result in emergency case cancellations. 
We also assume priority factors for each elective patient on the waiting list and each emergency case which 
are defined based on their needed specialty, their urgency level, and their actual waiting time. It is obvious that 
in most of the circumstances, emergency cases have higher priorities compared to the elective cases of the 
same specialty. Considering a waiting list of elective surgeries (𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) and their types, we aim to create a plan 
that designates: (a) buffer time length for emergency cases, and (b) the number (or subset) of elective and 
emergency surgeries to schedule in each surgery block based on their needed specialty (equivalently, surgery 
assignments to available surgical blocks). The objective of the plan is to minimise the total cost of 
conducting or postponing elective and emergency cases and the costs of OR overtime. When operations 
allocated to block b are not finished within [0,𝑅𝑅𝑅𝑅𝑏𝑏], overtime is incurred. The time (in terms of days) that the 
patient has been added to the waiting list is considered as waiting time. 

4. MODEL FORMULATION 

The notations used in the model are shown in Table 1. To express the uncertainty in this problem, we defined 
a scenario 𝜙𝜙 ∈ Φ to represent a vector of stochastic parameters (which is determined based on different surgery 
durations in various situations), then the surgical time for patient 𝑖𝑖 ∈ 𝐼𝐼 in each scenario 𝜙𝜙 ∈ Φ can be shown 
by 𝑑𝑑𝑖𝑖

𝜙𝜙. Let 𝑃𝑃𝑃𝑃(𝜙𝜙) represents the probability of scenario 𝜙𝜙, therewith, ∑ 𝑃𝑃𝑃𝑃(𝜙𝜙) = 1𝜙𝜙∈Φ . 

 

Figure 1. The shortcoming of preventive 
schedules based on only BIMs 

Figure 2. The preventive schedules based 
on using buffer times every few hours 
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Table 1. Notations used in the model development 
Type Notations Definitions 

Indices I Set of all patients waiting for surgery 
 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Set of elective patients  
 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Set of emergency patients 
 𝐵𝐵 Set of surgical blocks 
 {𝑏𝑏′} Set of dummy blocks (not surgical blocks) 
 Φ Set of scenarios (based on different surgery durations) 
Functions 𝑃𝑃𝑃𝑃(𝜙𝜙) Probability density function of scenario 𝜙𝜙 
Decision variables 𝑥𝑥𝑖𝑖𝑖𝑖 1, if patient 𝑖𝑖 is allocated to block 𝑏𝑏; 0 otherwise 
 𝑥𝑥𝑖𝑖𝑏𝑏′ 1, if patient 𝑖𝑖 is allocated to dummy block 𝑏𝑏′; 0 otherwise 
 𝑜𝑜1𝑏𝑏

𝜙𝜙 Overtime of surgical block 𝑏𝑏 in scenario 𝜙𝜙 (of elective cases) 
 𝑜𝑜2𝑏𝑏

𝜙𝜙 Overtime of surgical block 𝑏𝑏 in scenario 𝜙𝜙 (of emergency cases) 
 𝑜𝑜𝑏𝑏

𝜙𝜙 Total overtime of surgical block 𝑏𝑏 in scenario 𝜙𝜙 
 𝐵𝐵𝐵𝐵𝑏𝑏 Buffer time of block b 
Parameters 𝑝𝑝𝑖𝑖 Priority of patient 𝑖𝑖 
 𝑎𝑎𝑖𝑖𝑖𝑖 1, if patient 𝑖𝑖 can be assigned to block b; 0, otherwise 
 𝑐𝑐𝑏𝑏𝑜𝑜 Unit overtime cost of block b per minute 
 𝑐𝑐𝑖𝑖𝑖𝑖 Cost of allocating patient 𝑖𝑖 to block b 
 𝑐𝑐𝑖𝑖𝑏𝑏′ Cost of postponing surgery to dummy block 𝑏𝑏′ 
 𝑅𝑅𝑅𝑅𝑏𝑏 The regular open duration of surgical block 𝑏𝑏  
 𝑂𝑂𝑚𝑚𝑚𝑚𝑚𝑚 The maximum permitted overtime  
 𝑑𝑑𝑖𝑖

𝜙𝜙 Surgery duration of elective patient 𝑖𝑖 in the scenario 𝜙𝜙 
 𝑑̃𝑑 Uncertain surgery duration 
 K Number of scenarios (based on different surgery durations) 
 S Number of scenarios (based on buffer time amounts)  

 
In the objective function (1), the fixed initial terms represent the costs of conducting or postponing elective and 
emergency surgeries, while the last term 𝐸𝐸(𝑄𝑄�𝑥𝑥, 𝑑̃𝑑�) shows the expected objective value of a recourse problem 
which captures overtime costs under the impact of uncertainties in all the scenarios. Constraints (2), (3) guarantee 
that each of the patients are assigned to exactly one surgical block or are postponed (are assigned to a dummy 
block). Constraints (4) and (5) guarantee that each surgery is allocated to one of its pre-allocated blocks to its 
corresponding specialty. The variables 𝑥𝑥𝑖𝑖𝑖𝑖  are defined as binary decision variables in constraints (6). 

𝑴𝑴𝑴𝑴𝑴𝑴���𝑝𝑝𝑖𝑖
𝑏𝑏 ∈𝐵𝐵

𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑖𝑖=1

𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 + � � 𝑝𝑝𝑖𝑖
𝑏𝑏′ ∈ {𝑏𝑏′}

𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑖𝑖=1

𝑐𝑐𝑖𝑖𝑏𝑏′𝑥𝑥𝑖𝑖𝑏𝑏′ + � �𝑝𝑝𝑖𝑖
𝑏𝑏 ∈𝐵𝐵

𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑖𝑖=1

𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 + � � 𝑝𝑝𝑖𝑖
𝑏𝑏′ ∈ {𝑏𝑏′}

𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑖𝑖=1

𝑐𝑐𝑖𝑖𝑏𝑏′𝑥𝑥𝑖𝑖𝑏𝑏′ + 𝐸𝐸(𝑄𝑄�𝑥𝑥, 𝑑̃𝑑�)�                                    (1) 

�𝑥𝑥𝑖𝑖𝑖𝑖
𝑏𝑏∈𝐵𝐵

+� 𝑥𝑥𝑖𝑖𝑏𝑏′
𝑏𝑏′∈{𝑑𝑑𝑑𝑑}

= 1          ∀𝑖𝑖 ∈ 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                                    (2) 

�𝑥𝑥𝑖𝑖𝑖𝑖
𝑏𝑏∈𝐵𝐵

+ � 𝑥𝑥𝑖𝑖𝑏𝑏′
𝑏𝑏′∈{𝑑𝑑𝑑𝑑}

= 1          ∀𝑖𝑖 ∈ 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                                 (3) 

 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑎𝑎𝑖𝑖𝑖𝑖         ∀𝑖𝑖 ∈ 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ,𝑏𝑏 ∈ 𝐵𝐵                                                                         (4) 

𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑎𝑎𝑖𝑖𝑖𝑖         ∀𝑖𝑖 ∈ 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ,𝑏𝑏 ∈ 𝐵𝐵                                                                        (5) 

𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0,1},         ∀𝑖𝑖 ∈ 𝐼𝐼 ,𝑏𝑏 ∈ 𝐵𝐵                                                                            (6) 

 

𝐸𝐸 �𝑄𝑄�𝑥𝑥, 𝑑̃𝑑�� represents the objective value of the following recourse problem: 

𝑀𝑀𝑀𝑀𝑀𝑀 �𝑃𝑃𝑃𝑃(
𝜙𝜙∈Φ

𝜙𝜙) ��𝑐𝑐𝑏𝑏𝑜𝑜
𝑏𝑏∈𝐵𝐵

𝑂𝑂𝑏𝑏
𝜙𝜙�                                                                        (7) 

 𝑂𝑂1𝑏𝑏
𝜙𝜙 ≥�𝑥𝑥𝑖𝑖𝑖𝑖

𝑖𝑖∈𝐼𝐼

𝑑𝑑𝑖𝑖
𝜙𝜙 − (𝑅𝑅𝑅𝑅𝑏𝑏 − 𝐵𝐵𝐵𝐵𝑏𝑏),      ∀𝑖𝑖 ∈ 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ,𝑏𝑏 ∈ 𝐵𝐵,𝜙𝜙 ∈ Φ                                                    (8) 

 𝑂𝑂2𝑏𝑏
𝜙𝜙 ≥�𝑥𝑥𝑖𝑖𝑖𝑖

𝑖𝑖∈𝐼𝐼

𝑑𝑑𝑖𝑖
𝜙𝜙 −  𝐵𝐵𝐵𝐵𝑏𝑏,      ∀𝑖𝑖 ∈ 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ,𝑏𝑏 ∈ 𝐵𝐵,𝜙𝜙 ∈ Φ                                                                    (9) 

  𝑂𝑂𝑏𝑏
𝜙𝜙 = 𝑂𝑂1𝑏𝑏

𝜙𝜙 + 𝑂𝑂2𝑏𝑏
𝜙𝜙      ∀ 𝑏𝑏 ∈ 𝐵𝐵,𝜙𝜙 ∈ Φ                                                                                               (10) 

   0 ≤ 𝑂𝑂𝑏𝑏
𝜙𝜙 ≤ 𝑂𝑂𝑚𝑚𝑚𝑚𝑚𝑚     ∀ 𝑏𝑏 ∈ 𝐵𝐵,𝜙𝜙 ∈ Φ                                                                                                   (11) 
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The objective function (7) aims to minimise overtime costs in different scenarios. Constraint (8) calculates the 
overtime of each surgical block in each scenario for elective cases based on random surgery durations, the 
regular length of each surgical block and the amount of buffer time for each block. Constraint (9) calculates 
the overtime of each surgical block in each scenario for emergency cases based on random surgery durations 
and amount of buffer time for each block. Constraint (10) calculates the total overtime of each surgical block 
in each scenario. Constraint (11) guarantees that total overtime of each surgical blocks is between 0 and the 
maximum permitted overtime. The priority factors of patients (pi) in the waiting list are defined based on their 
needed specialty, their waiting time, and their clinical urgency level. 

5. CASE STUDY 

Inspired by real data from the surgery departments in hospitals, we considered a waiting list of 1172 elective 
patients from different specialties who have been ranked and will undergo surgery during the next week 
considering the random number of emergency case arrivals in flexible ORs. We considered an operating theatre 
with 3 ORs and 15 surgical blocks for 5 working days. Table 2 shows the master surgery schedule that was 
been determined at the tactical level for several months. To make it clearer, as an example, the combination of 
OR1, Monday and GASTRO specialty comprise a surgical block (here, block 1). 

Table 2. The master surgery schedule* 
ORs\Days Monday Tuesday Wednesday Thursday Friday 

OR 1 GASTRO GASTRO GYN GEN VASC 
OR 2 ENT ORTH GEN GYN URO 
OR 3 GEN ENT URO VASC GASTRO 

* GASTRO=Gastroenterology, GYN=Gynaecology, VASC=Vascular, GEN=General, ORTH=Orthopaedic, URO=Urology,  
ENT=Ear, nose & throat 

Each block has a different length (for example, 480 minutes), and each surgery can be allocated to any of its 
related pre-assigned specialty blocks during the planning cycle (here a week).  Surgery duration is among one 
of the important surgical uncertainties. It is commonly assumed that surgery durations in stochastic 
programming models will also be lognormally distributed since the lognormal distribution provides the best fit 
for OR data (Marques and Captivo; 2017, Zhang, 2020). Moreover, the patients from the same specialty are 
usually assumed to have the same probability distribution function (Jebali and Diabat, 2015; Neyshabouri and 
Berg, 2017). Based on these, using historical data, we fitted lognormal distributions to our different surgical 
specialties. Table 3 shows the parameters of elective surgery duration lognormal distribution functions based 
on each surgery type obtained from our data analysis. 

Table 3. The surgical blocks information (obtained from analysis of our data) 

Block number Surgery types Weekday Block duration 
(min) 

Mean surgery duration 
(min) 

Surgery duration  
distribution function* 

b1 GASTRO Monday 435 25.33 lognormal(3.15, 0.39, K) 
b2 ENT Monday 540 79.13 lognormal(4.24, 0.49, K) 
b3 GEN Monday 435 63.82 lognormal(4.00, 0.54, K) 
b4 GASTRO Tuesday 480 25.33 lognormal(3.15, 0.39, K) 
b5 ORTH Tuesday 555 102.72 lognormal(4.42, 0.64, K) 
b6 ENT Tuesday 540 79.13837 lognormal(4.24, 0.49, K) 
b7 GYN Wednesday 555 60.07304 lognormal(3.94, 0.55, K) 
b8 GEN Wednesday 435 63.82435 lognormal(4.00, 0.54, K) 
b9 URO Wednesday 450 48.75474 lognormal(3.70, 0.60, K) 
b10 GEN Thursday 435 63.82435 lognormal(4.00, 0.54, K) 
b11 GYN Thursday 555 60.07304 lognormal(3.94, 0.55, K) 
b12 VASC Thursday 540 88.52627 lognormal(4.37, 0.46, K) 
b13 VASC Friday 540 88.52627 lognormal(4.37, 0.46, K) 
b14 URO Friday 450 48.75474 lognormal(3.70, 0.60, K) 
b15 GASTRO Friday 435 25.33276 lognormal(3.15, 0.39, K) 

* K in this column shows the number of stochastic scenarios we aim the model to be run. 

Another random parameter is the emergency arrivals. Some authors discussed that the arrivals of emergency 
cases follow a Poisson process (Samudra et al., 2016; Jebali and Diabat, 2017). Using historical data, the 
Poisson distribution functions of the number of emergency cases from each specialty group, which showed up 
on each weekday has been shown in Table 4. We assume that emergency surgeries can only be performed in 
their needed specialty blocks (within their urgency waiting time limit). 
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Table 4. The distribution of emergency case arrivals in each specialty-weekday 

Specialty\Weekday Monday* Tuesday Wednesday Thursday Friday 
ENT Poisson (0,S) Poisson (0,S) Poisson (0,S) Poisson (0,S) Poisson (0,S) 
GASTRO Poisson (4,S) Poisson (2,S) Poisson (1,S) Poisson (3,S) Poisson (2,S) 
GEN Poisson (1,S) Poisson (3,S) Poisson (1,S) Poisson (3,S) Poisson (2,S) 
GYN Poisson (0,S) Poisson (0,S) Poisson (0,S) Poisson (0,S) Poisson (1,S) 
ORTH Poisson (6,S) Poisson (11,S) Poisson (6,S) Poisson (7,S) Poisson (7,S) 
URO Poisson (1,S) Poisson (0,S) Poisson (2,S) Poisson (0,S) Poisson (1,S) 
VASC Poisson (1,S) Poisson (0,S) Poisson (1,S) Poisson (1,S) Poisson (0,S) 
*S in this table refers to the value of Poisson distribution. 

As an example, Figure 3 shows the probability distributions of GASTRO surgical specialty (surgery duration 
and the number of emergency case arrivals on Monday). 

The proposed mathematical 
model has been solved 
stochastically using the Gurobi 
package in Python. Every cost 
parameter for the performance 
measures (such as overtime 
(𝑐𝑐𝑜𝑜), scheduling (𝑐𝑐𝑖𝑖𝑖𝑖) and 
postponing (𝑐𝑐𝑖𝑖𝑏𝑏′)) in the 
objective function is supported 
by relevant healthcare 
references. They are generated 
using data that are publicly 
accessible (Carlo et al 2010). Priority factors have been defined using historical data for each elective patient 
on the list considering their needed specialty, their waiting time, and their urgency level. In our case study, 
elective patients in the waiting list have been divided into three main urgency categories based on their urgency 
level (A=Required admission within 30 days, B=Required admission within 90 days, C=Required admission 
within 365 days). Emergency cases also have different urgency levels based on their waiting time limit (A=1hr 
Life threatening, B= 2hrs Highly critical organ/limb threat, C=4hrs Critical, D= 8hrs Urgent, E=24hrs Semi-
Urgent, F=72hrs non-Urgent). 

6. NUMERICAL RESULTS 

We solved and ran our model for 𝑆𝑆 = 5 different scenarios based on various buffer time amounts in each block. 
The number of emergency case arrivals per specialty per weekday in each of these buffer time scenarios, have 
been defined randomly using their specific Poisson distribution function (Also the value of Poisson distribution 
functions equal to 5). In each of these 5 scenarios, the model has been run 𝐾𝐾 = 10 times (i.e., 𝐾𝐾 shows the 
number of surgery duration scenarios). At first, we ran the model deterministically to acquire a good estimation 
of the buffer time optimal value. Then we used the buffer times from the deterministic model to solve the 
problem stochastically. We consider it as the base scenario. Then we changed the amounts of buffer time in 
each scenario and ran it several time stochastically. At the same time with changing buffer times, we changed 
the number of emergency case arrivals per specialty per weekday. Table 5 and Table 6 represent the number 
of emergency cases and the buffer times obtained from solving the model in the base scenario (stochastic model 
with buffer time from deterministic model), respectively. The results of objective function sensitivity analysis 
in different buffer time scenarios have been summarised in Figure 4. The model has been coded and run with 
Gurobi package in Python. 

Table 5. The number of emergency patients in base scenario 

Specialty Monday* Tuesday Wednesday Thursday Friday 
ENT 0 0 0 0 0 
GASTRO 4 2 1 3 2 
GEN 1 3 1 3 2 
GYN 0 0 0 0 1 
ORTH 6 11 6 7 7 
URO 1 0 2 0 1 
VASC 1 0 1 1 0 

Figure 3. Probability distributions of GASTRO surgical specialty 
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Table 6. Buffer times obtained from the base scenario 

Block number b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 
Buffer time 
(min) 435.0 63.8 0.0 279.5 452.3 205.4 50.7 0.0 285.9 54.7 128.1 480.0 0.0 102.7 333.4 

7. CONCLUSIONS 

Cancellation, postponement or not treating the 
emergency case surgeries within their permitted 
waiting time, due to a lack of enough OR time capacity, 
are so costly to hospitals and result in potentially 
dangerous situations for patients. One of the methods in 
the literature is using BIM methodology as a preventive 
methodology against emergency case random arrivals 
in flexible ORs, however there are some shortcomings 
for this methodology. According to Figure 1, when the 
surgeries are too long, it may reduce the opportunities 
for emergency patients’ insertions who have limited 
waiting time to be under treatment. It is suggested to 
consider buffer time for emergency cases. The length of 
each buffer time is important as it cannot be too long or too short. Based on Figure 3, the base scenario of 
solving the stochastic model with buffer time from the deterministic model can provide a good estimate of 
buffer time for emergency cases. After increasing the amounts of the base scenario, the objective does not 
change much, however by reducing the base scenario amounts, the objective function increases significantly. 
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