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Abstract: Understanding the genetic makeup of organisms is a very important goal in bioinformatics. DNA se-
quencing, the process of determining the order of the nucleotide bases in DNA, can now be performed quickly
and cheaply with commercially available devices no bigger than a USB stick. The latest DNA sequencers use
nanopore technologies to capture long, repetitive DNA structures with great success, however, the reported
reading accuracy needs improving. One main source of error occurs during the basecalling process when raw
nanopore signals outputted by the sequencers are being translated into genetic codes. The distinctive feature of
basecalling lies in that not only do the nanopore signals need to be segmented, but they also need be grouped
into four types, each representing a genetic code. In this paper, we propose a novel basecalling algorithm using
change-point detection methods and Markov chain Monte Carlo (MCMC) sampling techniques. We use real
and simulated data to demonstrate the effectiveness of the proposed algorithm.
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1 INTRODUCTION

The basic idea of nanopore sequencing technologies involves a protein nanopore set in an electrically resistant
polymer membrane (see Figure 1). By setting a voltage across this membrane, an ionic current is created and is
flowing through the pore. When a DNA molecule passes through this hole, disruption to the current occurs. It
is possible to identify which molecule passes through the pore by measuring changes in the electrical current.
Further details about nanopore technologies can be found in Deamer et al. (2016). DNA sequencing is the
process of determining the order of the nucleotide bases in DNA. Over the last few years, DNA sequencing
using the enzyme-based nanopore technologies has become increasingly popular. One source of error occurs
during which the raw nanopore signals are being translated into genetic alphabet (A, C, G and T). This process
is called basecalling. One of the challenges of basecalling is that not only do the raw nanopore signals need to
be segmented, but they also need be classified into four types, each representing a genetic code.

Figure 1. Nanopore sequencing diagram. Image from Andreas et al. (2019).

In this paper, we propose a novel basecalling algorithm using change-point detection methods and Markov
chain Monte Carlo (MCMC) sampling techniques. Change-point detection methods have been widely used in
bioinformatics applications (see, for example, Evans et al. (2011); Sofronov et al. (2009); Sofronov (2011);
Polushina and Sofronov (2011, 2013, 2014, 2016); Priyadarshana and Sofronov (2012)). Most change-point
methods can identify the number of change-points and their locations but there are very few discussions around
a change-point algorithm that can also group the segments simultaneously.

2 STATISTICAL MODEL

We consider the nanopore data X as a time series with time points t = 1, . . . , T , where T represents the total
length of the data. Let xt be a real data value at a particular time point t, X = (x1, . . . , xT ). We assume
X consists of K homogeneous segments. Let the start of the k-th segment be sk, k = 1, 2, . . . ,K. For ease
of notation, we assume the first change-point is always at the start of a segment where t = 1, so s1 = 1.
The change-points, therefore, are (s1, s2, . . . , sK), where the last change-point sK is at the start of the K-th
segment. We assume the data within each segment is normally distributed with a unique mean and a common
variance but the number of segments or change-points and their locations are unknown, xt = ck + ϵt, where
ck is the mean level of the k-th segment and ϵt is the error term, ϵt ∼ N(0, σ2), where σ2 is the common
variance.

Assume there are 4 distinct levels (or groups) that each ck could belong to. If the levels represent a particular
DNA alphabet, there are 4 groups (A, C, G, and T). Assume µg and τ2g are the mean and the variance of the
distribution for group g, g = 1, 2, 3, 4. We can thus write ck as ck ∼ N(µg, τ

2
g ). Let π be the probabilities that

each segment can be assigned to one of the 4 groups, π = (π1, π2, π3, π4), π1 + π2 + π3 + π4 = 1.

We follow a methodology similar to one used in Sadia et al. (2019) to build the posterior likelihood func-
tions based on the statistical model introduced above. The posterior likelihood function is the probability of
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generating the observed sequence of segments for any given parameter values.

Firstly, if ϕ is the probability that a data point is a change point, for our model with K segments and start
positions s = (s1, s2, . . . , sk) with s1 = 1, sK ≤ T , the following probability statement is true:

p(K, s|ϕ) = ϕK−1(1− ϕ)T−K . (1)

We assume each segment can be assigned to one of 4 groups with probabilities π = (π1, . . . , π4). Let gk be
the group of the k-th segment. Let bg be the number of segments that belong to group g, i.e. b1 is the number
of segments belonging to the first group and b2 is the number of segments belong to the second group, etc. The
probability of a specific assignment of K segments into g groups is therefore:

p(g|K,π) =
4∏

g=1

πbg
g . (2)

If ck is the mean of the k-th segment and the value of ck depends on the mean and the variance of the group
ck belongs to, then we can write the probability of the mean for all segments as:

p(c|g, µ, τ2) =
K∏

k=1

N(ck|µg, τ
2
g ). (3)

The probability density function of the data is the product of the probability density functions over all the
segments. We can express this as:

p(X|K, s, c, σ2) =
T∏

t=1

N(xt|σ2). (4)

Using Bayes’ theorem, the posterior distribution of the parameters is:

p(K,S, g, c, ϕ, π, σ2, µ, τ2 | X) ∝ p(X,K, S, g, c | ϕ, π, σ2, µ, τ2) p(ϕ) p(π) p(σ2) p(µ) p(τ2). (5)

The first term on the right hand side of (5) is the joint distribution of X,K, s, g and c given the prior parameters,
and it can be expressed as:

p(X,K, S, g, c | ϕ, π, σ2, µ, τ2) = p(X | K,S, c, σ2) p(K,S | ϕ) p(c | g, µ, τ2) p(g | K,π).

Using (1), (2), (3), and (4), we can see that the posterior distribution (5) is proportional to:

p(X,K, S, g, c | ϕ, π, σ2, µ, τ2) p(ϕ) p(π) p(σ2) p(µ) p(τ2)

= ϕK−1(1− ϕ)T−K
K∏

k=1

N(ck | µgk , τ
2
gk
)πgk

T∏
t=1

N(xt | ck, σ2) p(ϕ) p(π) p(σ2) p(µ) p(τ2).

3 ALGORITHM

The proposed change-point basecalling algorithm was developed within the framework of the Generalized
Gibbs Sampler; see Keith et al. (2004, 2008). The goal of the algorithm is to achieve the following two
objectives simultaneously: 1) identification of change points, and 2) classification of each segment divided by
the change points into four groups. There are three main parts to the algorithm: insertion, deletion, and update
model parameters.
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3.1 Insertion

A new change-point z is randomly proposed in segment k between sk and sk+1 breaking the segment into two
and new values of gk and ck are drawn for the proposed left and right segments. Let c′k and g′k be the new
values for the proposed left segment and c′′k+1 and g′′k+1 be the new values for the proposed right segment. The
g′k and g′′k are generated using the group probability occurrence π1, . . . , πg , and c′k and c′′k are generated using
a normal distribution with parameters (µg′

k
, τ2g′

k
) and (µg′′

k+1
, τ2g′′

k+1
). Following Sadia et al. (2019), it can be

shown that the new change-point is rejected with a probability proportional to P1 given by

P1(insert) = (1− ϕ)

sk+1∏
t=sk

p(ϵt|0, σ2)
1

(dk − sk)

1

M(K)
,

p(ϵt|0, σ2) =
1√
2πσ2

exp

(
− ϵ2t
2σ2

)
, ϵt = xt − ck,

M(K) is the total number of moves for a sequence with K segments. The new point is accepted with a
probability proportional to P0

P0(insert) = ϕ
z∏

t=sk

p(ϵ′t|0, σ2) ×
sk+1−1∏
t=z+1

p(ϵ′′t |0, σ2)
1

M(K + 1)
,

p(ϵ′t|0, σ2) =
1√
2πσ2

exp

(
− ϵ′2t
2σ2

)
, ϵ′t = xt − ck,

p(ϵ′′t |0, σ2) =
1√
2πσ2

exp

(
− ϵ′′2t
2σ2

)
, ϵ′′t = xt − ck.

The probability of accepting the new change-point z is P0(insert)/(P0(insert) + P1(insert)).

3.2 Deletion

The deletion step merges the current segment k with the previous segment k−1. It is performed from segment
k = 2, . . . ,K (we cannot delete when we are at the first segment as there is no previous segment). New
values of gk and ck are drawn for the new proposed merged segment. Similar to the Insertion step, gk is
generated using the group probability occurrence π1, . . . , πg and ck is generated from a normal distribution
with parameters (µgk , τ

2
gk
). The probability of rejecting the deletion is proportional to P0 given by

P0(delete) = ϕ
z∏

t=sk−1

p(ϵ′t|0, σ2) ×
sK+1−1∏
t=z+1

p(ϵ′′t |0, σ2)
1

M(K)
.

The probability of accepting the deletion is proportional to P1

P1(delete) = (1− ϕ)

sk+1−1∏
t=sk−1

p(ϵt|0, σ2)
1

(sk − 1− sk−1)

1

M(K − 1)
,

The probability of accepting the deletion of the change-point is P1(delete)/(P0(delete) + P1(delete)).

3.3 Update model parameters

At the end of an iteration (after insertion and deletion are performed for each segment), we update model
parameters, including group assignments gk, mean levels ck and parameters σ2, ϕ, π, µ, τ2. The updated
parameter values are used for the next iteration. The algorithm uses conventional Gibbs updates. The Slice
sampler is used to draw from non-standard distributions.

4 NUMERICAL RESULTS

In this section, we provide the results of a numerical study, in which we apply the proposed algorithm to both
simulated and real data sets.
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4.1 Artificial nanopore data

We generate normally-distributed data of length 1000 with 8 change-points representing the sequence
AGTCTTGATA. The mean and the variance for each of the four type of nucleotide generated are chosen based
on the information given in Derrington et al. (2010). We use different initial values of group mean/variance and
vary other model parameters to observe their effects. In this example, we use the following prior distributions:
ϕ ∼ Beta(1, 1), π ∼ Dirichlet(1, 1, 1, 1), τ2 ∼ Inv-Gamma(3, 3), σ2 ∼ Inv-Gamma(3, 3).

Figure 2 shows the generated data (black dots) with the corresponding nucleotide type. The average profile
obtained by the proposed algorithm is plotted in red. The average profile were calculated using the last 100
iterations. We also looked at the percentage of correct group assignments versus the number of iteration. We
have noticed that the number of correct group assignments stabilises after 50 or so iterations and it is around
95%. Various initial mean values for the algorithm were tried. Figure 3 illustrates that the group mean levels
start oscillating near the true mean levels after around the first 50 iterations regardless of the initial values.
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Figure 2. An average profile plot of the proposed algorithm for the artificial data.

4.2 Real data analysis

Here we present the analysis of a small segment of the real nanopore data outputted by the MinION sequencer
(see Jain et al. (2016)). Raw nanopore data can also be referred to as squiggles because of the shape of the
signals when you plot it. Figure 4 shows a small section of a read of the raw signal with the length of 400
(black dots) and the average profile (red line), which follows the data very well detecting most of the peaks
and troughs. Since this is a real nanopore data set, we do not know the true profile and, therefore, we look
for agreement between the different change-point methods. The issue is that existing change-point packages
use the change-point methodology in a more general sense and do not take into account the nature of the
DNA sequencing data nor do they consider any grouping of similar segments. We compare our algorithm
with the bcp package, which is a Bayesian R package based on the algorithm created by Barry and Hartigan
(1993). The algorithm was designed to detect changes in the mean of independent Gaussian observations. The
package returns the posterior probability of a change-point occurring at each time index in the series. The
resulting posterior means are shown in blue in Figure 4. Both algorithms show very good agreement in the
identification of the change-point locations.
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Figure 3. Group mean levels versus the iteration number.

5 CONCLUSIONS

Change-point detection methods have been widely used in bioinformatics, however, there have been no
change-point methods developed for nanopore basecalling. The proposed algorithm focuses on identifying
the locations of change-points and groups the segments into specific types in the context of basecalling.
A thorough comparison with other basecalling algorithms and implementation of the method in R package
breakpoint (see Priyadarshana and Sofronov (2015, 2016)) as well as the development of a model that
takes into consideration dependency of data (for example, see Ma et al. (2020); Ma and Sofronov (2020)) is a
matter for the future research. In addition, since basecalling can be performed in real time during sequencing,
it is also possible to use sequential change-point methods (for example, see Sofronov et al. (2012)).
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