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Abstract: It is a common finding in the forecasting literature that combining forecasts of the mean typically 
results in improved forecast accuracy when compared to the forecasts from the individual models when 
measured by mean squared forecast error (MSFE). While the literature on forecast combination of the mean is 
extensive, it contains fewer studies on combining other aspects of the forecast distribution, particularly quantile 
forecast combination. 

The aim of this study is to empirically investigate the performance of forecast combination of a quantile fore- 
cast known as Value-at-Risk (VaR), motivated by the fact that forecast accuracy is improved when combining 
forecasts of the mean. We empirically examined the forecast performance of combining VaR for the S&P500 
and FTSE financial indices. To do so, we used four models: two GARCH models, a neural network, and a 
stochastic volatility model to forecast VaR. The forecast performance of these four individual models is 
compared to that of a combined VaR forecast combination comprised of all four models. 

The results of this study indicate that VaR forecast combination may improve VaR forecast accuracy. We find 
that, overall, forecast combination performed better than almost all individual models for the 1, 2, and 5% 
quantiles for both indices. Unlike a continuous loss function such as MFSE or related loss functions which 
measure the distance between the forecast and the true observed value, however, we evaluated the forecast 
performance using the actual proportion of violations of VaR compared to the expected violations (the 
quantile), and ranked the forecast performance based on this. Therefore, while the results do show that the simple 
average forecast combination typically improves forecast accuracy based on proportion of violations of VaR, 
further research is necessary to investigate why, and under which conditions, combining forecasts of the 
quantile may improve forecast accuracy. Understanding the theoretical underpinning of quantile forecast 
combination has implications for risk management practices, as accurate risk forecasts are imperative for 
decision making. 
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1 INTRODUCTION

When risk forecasts from different models are available, it can be difficult to decide which forecast is most
reliable and relevant for industry applications. An inaccurate forecast of risk can have serious consequences, as
was evident in the global financial crisis of 2007-8, where the risk models underestimated risk. Overestimating
risk can also have negative implications for capital holding requirements.

It is a common finding in the forecasting literature that combining forecasts of the mean results in improved
forecast accuracy when compared to the forecasts from individual models as measured by a loss function such
as mean squared forecast error (see Bates & Granger (1969) and Timmermann (2006)). While the literature
on forecast combination of the mean is extensive, it contains fewer studies on combining other aspects of the
forecast distribution, particularly quantile forecast combination (Taylor (2020)). Some of the limited empirical
studies include Chan & James (2011), Halbleib & Pohlmeier (2012) Fuertes & Olmo (2013), Jeon & Taylor
(2013), Huang & Lee (2013), McAleer et al. (2013a,b), Bayer (2018), and Taylor (2020).

The aim of this study is to empirically investigate the performance of forecast combination of a quantile
forecast known as Value-at-Risk (VaR) using a simple average method, motivated by the fact that forecast
accuracy is improved when combining forecasts of the mean, and the simple average often outperforms other
weighting strategies (Chan et al. (2020)).

VaR is a method of estimating risk; it can be understood as the worst possible loss over a target horizon that
does not exceed a given probability (Jorion (2006)). While VaR has its limitations, it is a widely used measure
of risk and is used by, for example, the Basel Committee on Banking and Supervision (Basel Committee
on Banking Supervision (2019)). There are many ways to forecast VaR. The literature does not indicate the
superiority of one method over another (see Kuester et al. (2006); Boucher et al. (2014); Nieto & Ruiz (2016)).
Thus, forecast combination may be a useful tool for improving VaR forecasts if it is found that combining
forecasts of quantiles improve VaR forecast accuracy.

2 METHODOLOGY

All analysis was performed using the statistical programming language R (R Core Team (2022)).

2.1 Value-at-Risk

The VaR can be defined as the lower quantile of the returns distribution for a given probability. In this study,
we compare forecasts of 1, 2, and 5% VaR from m = 1, . . . ,M models to a combination of those forecasts.
Consider the stationary time series rt : {r1, . . . , rT } for t = 1, . . . , T . The forecast of VaR from the mth

model can be written as

ˆV aRt+1,m = r̂t+1,m − |κ|σ̂t+1,m, (1)

where κ is the critical value associated with the chosen quantile (in our case, 1, 2, or 5%), and r̂t+1,m

and σ̂t+1,m are the one-step ahead forecasts of the series mean and standard deviation and are estimated us-
ing the following four volatility models, which gives M = 4 models for each quantile and each financial index:

(i) ARMA-GJRGARCH where the standardised residuals from the model are used to estimate κ assuming the
skew-t distribution which can accommodate skewness and/or kurtosis,

(ii) and in addition, as an alternative method to estimate κ under the ARMA-GJRGARCH framework (above,
model (i)), we use a bootstrap with replacement to estimate the empirical quantile,

(iii) a neural network with two hidden layers where κ is estimated by using a bootstrap of the original return
subtract the estimated means from the neural network and dividing by the estimated standard deviations also
from the neural network, (Eq. (4))

(iv) AR(1) stochastic volatility model where κ is estimated using the average of the empirical quantiles of the
MCMC draws.
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A simple average (SA) is used to combine forecasts as it is often the best weighting strategy when combining
mean forecasts (Chan et al. (2020)):

ˆV aR
SA

t+1,m =
1

m

M∑
m=1

ˆV aRt+1,m. (2)

Forecasts from individual models and the forecast combination are ranked according to their performance by
comparing the actual number of violations to the expected number of violations (1, 2, or 5%). The fore-
cast which resulted in the proportion of violations closest (either above or below) to the expected number of
violations was deemed the best (ranked number 1), and so forth.

2.2 The Models

Model (i) and Model (ii) ARMA-GJRGARCH with skew-t and bootstrap for κ: The GJRGARCH(p, q)
model of Jagannathan et al. (1993) takes the general form

rt = µt + ϵt, ϵt = σtzt, zt ∼ iid(0, 1)

σ2
t = ω +

q∑
i=1

αiϵ
2
t−i +

q∑
i=1

ϕiϵ
2
t−iIt−1 +

p∑
i=1

βiσ
2
t−i

where µt and σt are the conditional mean (estimated as an ARMA process in this paper) and conditional stan-
dard deviation of rt, respectively, ϵt are the residuals (errors), (ω, α, ϕ, β) are the parameters of the conditional
volatility, σ2

t to be estimated, where It−1 = 0 if ϵt−1 ≥ 0 and It−1 = 1 if ϵt−1 < 0. zt are the standardized
residual (shock) which are independently and identically distributed (iid) with zero mean and unit variance.
In this paper, we specify a GARCH(1,1) and assume a normal distribution for zt for the maximum likelihood
estimation process, but to obtain values for κ, we fit a skew-t to the standardized residuals to estimate the
quantiles (model i), in addition to we also use a bootstrap with replacement to estimate the empirical quantiles
of the standardized residuals (model ii). The ARMA order is selected using the auto.arima function in the
forecast package (Hyndman et al. (2023)), and the GJRGARCH is fitted using the rugarch package (Ghalanos
(2022)) both available in R.

Model (iii) Neural Network: Three separate neural networks are fitted, one for the conditional mean,
µt conditional variance, σt, and estimation of κ. The conditional mean is estimated as a lag of itself,
µ̂t = E(rt|rt−1), and the conditional variance can be estimated similarly using the second (raw) moment,
E(r2t |r2t−1), and by using

σ̂2
t = E(r2t |r2t−1)− E(rt|rt−1)

2. (3)

The standardized residuals can be estimated using

ẑt =
rt − µ̂t

σ̂t
(4)

and a bootstrap with replacement can be used to estimate κ. Each neural network has two hidden layers, is
estimated using a resilient backpropagation algortithm, with a sigmoid activation function. The neural network
was fitted using the neuralnet package in R.

Model (iv) Stochastic Volatility: In this study, we implement the stochastic volatility model of Kastner &
Frühwirth-Schnatter (2014). The mean model is estimated as an AR(1) process, and each residual from the
AR(1) process, ϵt, is assumed to have its own contemporaneous variance, eσ

2
t , where the volatility is estimated

as follows

ϵ|σ2
t ∼ N(0, exp(σ2

t )), σ2
t |σ2

t−1 ∼ N(µ+ ϕ(σ2
t−1 − µ), s2η), σ2

0 ∼ N(µ, s2η/(1− ϕ2)) (5)
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with θ = (µ, ϕ, sη)
T as the vector of parameters: level of log-variance µ, the persistence of log-variance ϕ,

and the volatility of log-variance sη . A prior distribution for the parameter vector θ must be specified, with
individual components, that is p(θ) = p(µ)p(ϕ)p(sη)

1. The initial state, σ2
0 is distributed as the stationary

distribution of an AR(1) process. An MCMC algorithm is implemented to calculate draws from the posterior
distribution. κ is estimated using the average of the empirical quantiles of the MCMC draws. The stochastic
volatility model was fitted using the stochvol package in R (Kastner (2016)).

3 DATA

The data used in this study are the S&P500 (US) and FTSE (UK) stock indices, where the daily log returns
are calculated using the expression rt = 100 log(pt/pt−1), where pt is the price on day t, for the period
01/01/1990 – 18/08/2022 (T = 8486) obtained from Thompson Reuters DataStream. We split the data into
the training and test sets, with an out-of-sample (test set) length of the 2000 most recent observations, leaving
T = 6486 observations for the training set. Figure 1 shows the index values (top) and returns (bottom) for the
S&P 500 and FTSE.

Figure 1. Daily S&P 500 (top left) and FTSE (top right) index value and returns (bottom left and right).

4 EMPIRICAL RESULTS

The results in Table 2 show that the stochastic volatility performed relatively poorly compared to the other
models, while the neural network performed quite well, as it correctly estimated risk for 2% and 1% quantiles
for the s&P500 and FTSE, respectively. Both the GARCH skew-t and stochastic volatility models underesti-
mated risk for all quantiles of both indices. The GARCH with bootstrap underestimated risk across all quan-
tiles for both indices with the exception of the S&P500 5% quantile where risk was overestimated. The neural
network either correctly or overestimated risk. While the forecast combination either correctly estimated risk,
or underestimated risk for both financial indices.

Table 2 shows the number of violations and proportion of violations (in brackets) of the VaR, and Table 2
shows the rank for each model and the forecast combination for both the S&P500 and FTSE financial indices
1Further details on specification of prior distributions are available upon request
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for all quantiles, 1, 2, and 5%. We find that, overall, forecast combination performed well, ranking a mixture
of first and second for both indices. Specifically, for the S&P 500, forecast combination ranked first, second
and first, and for the FTSE, forecast combination ranked second, first, and first, for the 1, 2, and 5% quantiles,
respectively.

S&P500 FTSE
Model 1% 2% 5% 1% 2% 5%
GJRGARCH skew-t 25 (0.0125) 49 (0.0245) 101 (0.0505) 28 (0.014) 50 (0.025) 113 (0.0565)
GJRGARCH bootstrap 27 (0.0135) 48 (0.024) 83 (0.0415) 31 (0.0155) 49 (0.0245) 103 (0.0515)
Neural Network 19 (0.0095) 40 (0.02) 99 (0.0495) 20 (0.01) 38 (0.019) 99 (0.0495)
Stochastic Volatility 46 (0.023) 73 (0.0365) 144 (0.072) 32 (0.016) 59 (0.0295) 105 (0.0525)
Forecast Combination 20 (0.01) 41 (0.0205) 101 (0.0505) 26 (0.013) 42 (0.021) 100 (0.05)

Table 1. Number and proportion (in brackets) of violations of VaR for each model and forecast combination
for the S&P 500 (left) and FTSE (right) for the 1, 2, and 5% quantiles.

S&P500 FTSE
Model 1% 2% 5% 1% 2% 5%
GJRGARCH skew-t 3 4 1 3 3 5
GJRGARCH bootstrap 4 3 2 5 2 3
Neural Network 2 1 1 1 1 2
Stochastic Volatility 5 5 3 4 4 4
Forecast Combination 1 2 1 2 1 1

Table 2. Forecast performance ranking for each model and forecast combination for the S&P 500 (left) and
FTSE (right) for the 1, 2, and 5% quantiles.

5 CONCLUSIONS

In this study, we empirically examined whether combining individual forecasts of VaR can improve forecast
accuracy. The results of this study indicate that VaR forecast combination may improve VaR forecast accuracy.
Specifically, we empirically examined the performance of VaR forecast combination for the S&P500 and FTSE
stock indices using four different models and the combination of the forecasts from these models for the 1, 2,
and 5% quantiles. We found that, overall, forecast combination performed well, ranking as the best forecast
for almost all quantiles for both indices. However, unlike a continuous loss function such as MFSE or related
loss functions which measure the distance between the forecast and the true observed value, we evaluated the
forecast performance using the actual proportion of violations of VaR compared to the expected violations (the
quantile), and ranked the forecast performance based on this. Therefore, while the results do show that the
simple average forecast combination typically improves forecast accuracy based on proportion of violations
of VaR, further research is necessary to investigate why, and under which conditions, forecast combination of
the quantile may improve forecast accuracy. Understanding the theoretical underpinning of quantile forecast
combination has implications for risk management practices, as accurate risk forecasts are imperative for
decision making.
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Kastner, G. & Frühwirth-Schnatter, S. (2014), ‘Ancillarity-sufficiency interweaving strategy (asis) for boosting

mcmc estimation of stochastic volatility models’, Computational Statistics & Data Analysis 76, 408–423.
Kuester, K., Mittnik, S. & Paolella, M. (2006), ‘Value-at-risk prediction: A comparison of alternative

strategies’, Journal of Financial Econometrics 4, 53–89.
McAleer, M., Jimenez-Martin, J.-A. & Amaral, T. (2013a), ‘Has the basel accord improved risk management

during the global financial crisis?’, The North American Journal of Economics and Finance 26, 250–265.
McAleer, M., Jimenez-Martin, J.-A. & Amaral, T. (2013b), ‘International evidence on gfc-robust forecasts for

risk management under the basel accord’, Journal of Forecasting 32, 267–288.
Nieto, M. & Ruiz, E. (2016), ‘Frontiers in var forecasting and backtesting’, International Journal of

Forecasting 32, 475–501.
R Core Team (2022), R: A Language and Environment for Statistical Computing, R Foundation for Statistical

Computing, Vienna, Austria.
URL: https://www.R-project.org/

Taylor, J. (2020), ‘Forecast combinations for value at risk and expected shortfall’, International Journal of
Forecasting 36, 428–441.

Timmermann, A. (2006), Forecast Combinations, in ‘Handbook of Economic Forecasting’, Vol. 1, Elsevier,
chapter 4, pp. 135–196.

907


	INTRODUCTION
	METHODOLOGY
	Value-at-Risk
	The Models

	DATA
	EMPIRICAL RESULTS
	CONCLUSIONS



