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Abstract: Stan is a probabilistic programming language that uses Markov chain Monte Carlo (MCMC) 
sampling for Bayesian inference (Carpenter at el.). Stan sampling can be parallelised by running Markov chains 
m on separate processing cores n, i.e. ≥ 1 chain/core, for Amdahlian speedup (Annis et al.). An extension, 
introduced here, is adaptive parallelisation. First, prior to planned sampling, performance benchmarking was 
dynamically performed with m = 4…M chains distributed over n = 1…m cores (where M is a system’s number 
of available cores, and using at least four chains is recommended (Vehtari et el.)). The best performing 
configuration (m, n) was then automatically adopted (github.com/tstenborg/Stan-Adaptive-Parallelisation). 

To be relevant, benchmarking should proceed with the same data and compiled Stan model as the planned 
sampling. For efficiency, benchmarking was performed with fewer chain iterations than for inference proper, 
though using the same ratio of warmup to post-warmup iterations/chain (1 : 1/m, yielding an equal number of 
total draws per configuration). For further efficiency, comparison of only one evaluation of each configuration 
was made. One evaluation was deemed sufficient after measuring speedup variability, for an example problem 
and configuration near the middle of a test system’s (Intel Core i7-10750H) non-hyperthreaded (m, n) 
configuration range. The simplifying assumption was made that results for the configuration were 
representative of the entire hyperthreaded and non-hyperthreaded range. Finally, for meaningful 
interconfiguration comparisons, a fixed seed was passed to the Stan random number generator. 

Warmup iterations had a significant effect on optimum (m, n). Too 
few warmup iterations, though speeding up benchmarking, can leave 
Stan without enough adaptation time to determine efficient sampling 
parameters (Hecht et al.). That in turn, sometimes caused 
misoptimsation. Empirical testing suggested 80 warmup iterations 
as a minimum for adaptive parallelisation. 

Figure 1 shows speedup as a function of (m, n) for the stan_model 
example built into RStan (top), and a test mixture model (23,315 
members, bottom). Note the contrasting speedup for a small data, 
simple model (top) vs a large data, complex model (bottom). Stan 
MCMC with a naïve maximum (m, n) configuration wasn’t always 
quickest. The fastest (m, n) was a function of model, data volume 
and warmup iterations. 
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Figure 1. MCMC parallelisation 
and Stan model inference speedup. 

Simple model (top) vs complex 
model (bottom) 
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