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Abstract: Improving teaching quality has been an ongoing pursuit for policymakers, researchers and 
broader government agencies and organisations. Professional development (PD) initiatives directed at teachers 
are a recognised strategy for improving teaching quality, with the underlying intention to support improved 
student achievement. Yet there is limited evidence of the actual impact of PD directed at teachers on student 
learning outcomes. Quality Teaching Rounds (QTR), a well-recognised form of collaborative PD in Australia, 
is one of few approaches to provide evidence of impact on teaching quality and student outcomes. Through 
multiple Randomized Controlled Trials (RCTs), a statistically significant positive impact of QTR PD has been 
demonstrated on teaching practices and student outcomes. A further question that remains is whether the 
change in teaching quality through involvement in QTR PD improves student achievement. This underlying 
mechanism is yet to be explored in the QTR PD framework and has rarely been explored in PD settings 
internationally due to limited data that often prevents suitable statistical techniques to be employed. 

A clustered RCT investigating the impact of QTR PD on teaching quality and student achievement was 
conducted in 2019, involving 133 government primary schools in New South Wales (NSW), Australia. Data 
were collected from 222 teachers and 5146 students in Stage 2 (years 3-4) in Term 1 and these teachers and 
students were followed up in Term 4 of the same year. Teaching practices were observed and rated in the 
classroom using a pedagogical model, the Quality Teaching (QT) model, which contains 18 observable 
elements within three dimensions of teaching practice (Intellectual Quality, Quality Learning Environment and 
Significance), while students were assessed using the Progressive Achievement Test (PAT) in mathematics, 
which was measured using the scaled scores on 40 multiple choice questions. The data structure therefore 
comprised a combination of multilevel and longitudinal features along with latent constructs and multiple 
intervention groups (QTR vs wait-list control) that were being compared.  

This paper examines the underlying interconnected relationships between PD, teaching quality and student 
achievement by testing the hypothesis that the impacts of the QTR intervention on student achievement in 
mathematics was mediated by teaching quality. Multilevel structural equation modelling (MSEM) with 2-2-1 
design is investigated for these data. Student PAT scores in mathematics were significantly higher, on average 
(0.11SD [95% CI = 0.01,0.20]) in the intervention group (QTR) compared to those in the control group for the 
Intellectual Quality (IQ) dimension of the QT model. This demonstrates the statistically significant mediation 
effect of Intellectual Quality (IQ) on student learning outcomes.   

Keywords: Multilevel SEM, latent constructs, mediation, Monte Carlo confidence intervals, cluster RCT 

25th International Congress on Modelling and Simulation, Darwin, NT, Australia, 9 to 14 July 2023 
mssanz.org.au/modsim2023

944



Tian et al., Multilevel SEM: Teaching quality as mediator between intervention and student achievement 

 

1. INTRODUCTION 

The importance of education has been well recognized nationally and internationally as both the economic and 
non-economic benefits from investing in education are significant to both individuals and societies (Goczek et 
al., 2021; Hanushek et al., 2015; Hanushek and Woessmann, 2008; Patrinos and Psacharopoulos, 2013). 
Student achievement has been commonly used as a measure of the quality of education (Darling-Hammond, 
2000). To assess improvements in the quality of an education system, various within- and between-school 
factors have been studied for their impacts on student learning. Teaching quality is considered a crucial within-
school factor that influences student learning outcomes, with teaching quality usually measured by classroom 
observation. While Professional Development (PD) is a recognised key strategy for improving teaching quality 
(Darling-Hammond, 2000; Gore et al., 2017; Kennedy, 2006; Mizell, 2010), there is, to date, limited evidence 
of the effects of improved teaching quality on improved student achievement. Quality Teaching Rounds (QTR), 
a well-recognised PD approach in Australia, was designed as a pedagogy-based, collaborative approach to 
address limitations of traditional PD (Gore et al., 2017). The Quality Teaching (QT) model is one of two crucial 
components in QTR PD. 

The QT model (NSW Department of Education and Training., 2003), a pedagogical classroom observation 
framework, is a revised version of the Productive Pedagogy (Ladwig, 2007) and Authentic Pedagogy 
(Newmann et al., 1996) models that preceded it. It was designed to assist school teachers to understand the 
underlying constructs of teaching and learning in New South Wales (NSW), Australia and can be applied across 
all learning stages (K-12) and Key Learning Areas (KLAs). Specifically, it contains a total of 18 elements 
across three dimensions, namely Intellectual Quality (IQ), Quality Learning Environment (QLE), and 
Significance (SIG), as shown in Table 1. Where IQ is about developing deep understanding of important 
knowledge; QLE is focused on ensuring positive classrooms that boost student learning; while SIG connects 
learning to students’ lives and the wider community. Each dimension contains six observational elements, each 
element measured on a 5-point Likert scale. An element is defined as a component directly scored by 
observers/raters and a dimension as a grouping of elements that share a common feature. Latent constructs 
formed on the QT model is defined to measure teaching quality in the classroom and was formed for each of 
the three dimensions of the QT. 

Table 1. The quality teaching model 

Intellectual quality (IQ) Quality learning environment (QLE) Significance (SIG) 
Deep knowledge 

Deep understanding 
Problematic knowledge 
Higher order thinking 

Metalanguage 
Substantive communication 

Explicit quality criteria 
Engagement 

High expectations 
Social support 

Students’ self-regulation 
Student direction 

Background knowledge 
Cultural knowledge 

Knowledge integration 
Inclusivity 

Connectedness 
Narrative 

 

Despite the growing research on PD programs aimed to improve teaching practice and student achievement 
over the past two decades, large-scale RCT studies investigating both teaching quality and student achievement 
simultaneously are rare, mainly due to the costs and complexities involved with their implementation. This has 
led to a widely accepted, yet, rarely tested hypothesis that PD interventions influence the quality of teaching, 
which, in turn, influence student achievement. For the QTR PD, the impacts of QTR intervention on teaching 
quality and student academic achievement have been studied separately with results showing QTR PD to 
significantly affect teaching quality and student achievement in mathematics, when examined separately (Gore 
et al., 2017, 2021). This paves a solid foundation for further questioning the underlying mechanism between 
QTR PD, teaching quality and student achievement in mathematics. In this paper, we test the hypothesis that 
the effect of QTR PD intervention on student mathematics scores is mediated by teaching quality. Although 
cRCTs are commonly randomised at the school level, the measures of interest are at the individual level, 
resulting in a multilevel structure. The measures of primary interest for our study are at both teacher and student 
level, with students nested within teachers (i.e., a two-level structure). Additionally, our data includes latent 
constructs of the QT model and a longitudinal design with multiple intervention groups examined in the cRCT 
setting. Multilevel Structural Equation Modelling (MSEM) with a 2-2-1 design was thus employed. The 
methodology is presented in Section 2, followed by the results of modelling and associated discussion.  
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2. METHODOLOGY 

2.1. Data 

To investigate the impact of QTR PD on teaching quality and student achievement, a four-arm cluster 
Randomised Controlled Trial (cRCT) was conducted by the Teachers and Teaching Research Centre at the 
University of Newcastle in 2019. Described in detail in a protocol paper (Miller et al., 2019), this trial was 
arguably the largest cRCT conducted to investigate the impact of PD on both teaching quality and student 
achievement in Australia. Specifically, randomisation was at the school level using the Index of Community 
Socio-Educational Advantage (ICSEA). ICSEA is a measure of school socio-educational status which aims to 
make comparisons between schools more meaningful. Data was collected twice from the same group of Stage 
2 (Year 3-4) teachers (with no prior QTR experience) and from Stage 2 students who were taught by these 
teachers, during school Term 1 (February - March) and again in Term 4 (October - November), 2019. Schools 
were randomly allocated to one of four intervention groups (including two QTR-related groups and two 
control-related groups) immediately after baseline data collection, with interventions undertaken in Term 2-3. 
The baseline data was to ensure groups to be similar enough for comparisons prior to interventions so that the 
differences between groups can be reasonably attributed to intervention effects (Sims and Fletcher-Wood, 
2021). During baseline and follow-up data collection, up to two lessons were observed from each Stage 2 
teacher and evaluated using the QT model by external research assistants across two school days while their 
students were assessed via an independent standardised Progressive Achievement Test (PAT) in mathematics 
that contained 40 multiple choice questions that were administered by research assistants to minimise potential 
biases.  

The longitudinal cRCT data were collected from 133 government primary schools from NSW with 222 teachers 
and 5146 students, where 757 lessons were observed and rated in classrooms, and 10538 PATs were assessed. 
Based on preliminary analyses demonstrating no statistically significant difference between the two QTR-
related groups and two control-related groups, the two QTR groups were consequently combined and the two 
control groups were also combined. Overall, the data structure for this study comprises a two-level structure, 
two intervention groups, a longitudinal design (baseline and follow-up) and three-factor latent constructs of 
the QT model.  

2.2. Measurement model 

Original constructs of the QT model shown in Table 1 were first examined by confirmatory factor analysis 
(CFA) using QTR RCT data. However, global fit indices including comparative fit index (CFI), the Tucker–
Lewis index (TLI) and the Root Mean Square Error of Approximation (RMSEA) showed an unacceptable fit 
(CFI<0.90, TLI<0.90, RMSEA>0.05) to this data, potentially because the QT model was built for guiding 
teaching practice rather than for statistical analysis purposes. For this reason, explanatory factor analysis (EFA) 
was employed to obtain more objective latent constructs of the QT model to be able to statistically measure 
teaching quality. The 18 elements were separated into two sets (stable and unstable sets) following an EFA 
with different combinations of rotation methods, estimation methods and number of latent factors. Elements in 
the stable set remained consistently loaded onto the same latent factor across all combinations, in contrast to 
elements in the unstable set that loaded onto a range of different factors. The initial latent constructs formed 
using the stable elements were further examined using a CFA while unstable elements were moved across 
latent factors for an improved fit, as judged by three commonly used global fit indices (CFI, TLI, RMSEA) 
and local fit indices. The latent constructs formed by three pairwise correlated latent factors included IQ = {DK 
DU HE HOT SC EQC}, QLE = {E SS SSR} and SIG={BK PK KI C N}. Global fit indices of these latent 
constructs were satisfactory (CFI>0.95, TLI >0.95, RMSEA<0.05), with local fit indices also supporting well-
fitting models. The reliability and validity of the constructs were tested were further confirmed by education 
experts to ensure that these latent constructs were practically meaningful. 

2.3. Multilevel structural equation model 

For multilevel data, the variables of interest are measured at different levels violating the independence 
assumption postulated in classic regression modelling. Consequently, estimates of standard errors in the classic 
regression setting are biased, which distorts statistical inference, including calculations of p-values and 
confidence intervals, which jeopardizes valid decision making. Linear mixed effects modelling (LMM) is, 
however, well suited to multilevel educational data to provide more accurate estimates of standard error and 
associated statistical inference. To test multilevel mediation, the LMM has been postulated as a suitable 
framework (see, for example, Krull and MacKinnon, 2001; Raudenbush and Bryk, 2002), which requires 
positive intraclass correlation coefficients (ICCs) and the outcome variable to be measured at the lowest level. 
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However, it suffers from major limitations including difficulties with handling latent constructs and 
multivariate outcomes, which implies that measurement error, commonly associated with educational data, is 
unable to be effectively incorporated within this modelling framework. Conflation of between- and within 
effects can occur, which leads to biased estimates at both levels (Lüdtke et al., 2008; Preacher et al., 2010). 
Additionally, the LMM framework cannot accommodate testing multilevel mediation effects in the presence 
of latent constructs. While structural equation modelling (SEM) can solve these limitations, these models 
cannot accommodate the multilevel data structure. 

To assess school effectiveness, a multilevel structure co-exists (e.g., students nested within classes) with the 
situation that variables are often measured as latent constructs. Consequently, a model combining features from 
both LMM and SEM is required. Combining modelling from LMM into the SEM framework has been 
suggested since Schmidt's (1969) work. Several multilevel structural equation modelling (MSEM) methods, a 
generalised framework of LMM and SEM, have since been proposed, that enable models to accommodate the 
cluster/multilevel data structure and latent constructs within the single framework, allowing parameter 
estimation of all equations simultaneously, consequently improving efficiency and reducing bias. The MSEM 
framework is adopted from Muthen and Asparouhov (2008) for the present study, the general framework of 
which is depicted in Equations (1) – (3). This general framework was implemented in Mplus with the default 
estimation method, maximum likelihood estimation with robust standard errors (MLR), that do not require the 
standard normality assumption, with the between- and within effects separated by default, which avoids the 
conflation of between and within effects. The model is defined as follows.  

Level-1 Measurement model:                      𝒀𝒀𝒊𝒊𝒊𝒊 = 𝜈𝜈𝑗𝑗 + 𝚲𝚲𝒊𝒊𝜂𝜂𝒊𝒊𝒊𝒊 + 𝜖𝜖𝒊𝒊𝒊𝒊                                                        (1) 

Level-1 Structural model:                            𝜂𝜂𝒊𝒊𝒊𝒊 = 𝛼𝛼𝑗𝑗 + 𝑩𝑩𝒊𝒊𝜂𝜂𝒊𝒊𝒊𝒊 + 𝚪𝚪𝒊𝒊𝑿𝑿𝒊𝒊𝒊𝒊 + 𝜁𝜁𝒊𝒊𝒊𝒊                                           (2) 

Level-2 Structural model:                            𝜂𝜂𝒊𝒊 = 𝜇𝜇 + 𝛃𝛃𝜂𝜂𝒊𝒊 + 𝛄𝛄𝑿𝑿𝒊𝒊 + 𝜁𝜁𝒊𝒊                                                   (3) 

where  𝒀𝒀𝒊𝒊𝒊𝒊 is a 𝑝𝑝 × 1 vector of observed variables; 𝜈𝜈j  is a vector of intercepts in the level-1 measurement 
model; 𝚲𝚲𝒊𝒊  is a 𝑝𝑝 × 𝑚𝑚  matrix of factor loadings (weights); η𝑖𝑖𝑗𝑗  is a 𝑚𝑚 × 1 vector of latent variables; 𝜖𝜖𝒊𝒊𝒊𝒊 ∼
𝑀𝑀𝑀𝑀𝑀𝑀(0,Θ) is a vector of error terms. The level-1 measurement model serves to transform the observed 
variables to latent variables and can be used for dimension reduction if a latent construct exists. Otherwise, 𝚲𝚲𝒊𝒊 
reduces to an identity matrix and 𝜈𝜈𝑗𝑗 and 𝜖𝜖𝒊𝒊𝒊𝒊 are ignored. This associated modelling procedure is referred to as 
path analysis. The αj  term is a vector of intercepts in the level-1 structural model; 𝑩𝑩𝒊𝒊 is a 𝑚𝑚 ×
𝑚𝑚 coefficients/correlations matrix among latent variables; 𝚪𝚪𝒊𝒊 contains slope coefficients of covariates 𝑿𝑿𝒊𝒊𝒊𝒊 and 
𝜁𝜁𝒊𝒊𝒊𝒊 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀(0,Φ) is a vector of error terms. For the level-2 structural model, 𝜂𝜂𝒊𝒊 contains all the elements of 𝛼𝛼𝑗𝑗 
(random intercepts) and 𝑩𝑩𝒊𝒊 (random slopes if specified) that can vary at the level 2. 𝑿𝑿𝒊𝒊 contains all level-2 
covariates. 𝜇𝜇 contains the means of random effects and the intercepts of level-2 structural equations; 𝛃𝛃 contains 
slope coefficients of random effects; 𝛄𝛄 contains slope coefficients of random effects regressed on level-2 
covariates; 𝜁𝜁𝒊𝒊 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀(0,Ψ) is a vector of error terms. Both structural models serve to simultaneously estimate 
multiple regression equations. 

2.4. Multilevel mediation analysis in MSEM 

MSEM for testing multilevel mediation is recommended, a general framework for which was proposed by 
Preacher et al., (2010). The single-level mediation model (Baron and Kenny 1986) has been shown to be a 
special case of the MSEM framework. As variables can be measured at different levels in a multilevel structure, 
a set of sub-models defined by levels that variables are measured at have been proposed for multilevel 
mediation analysis (Krull and MacKinnon, 2001; Preacher et al., 2010). Hereafter, we only consider the case 
where the independent variable, 𝑋𝑋, and mediators, 𝑀𝑀, were measured at level 2 and the dependent variable, 𝑌𝑌, 
was measured at level 1, namely a 2-2-1 design. It is worth noting that mediation effects in the 2-2-1 design 
can only occur at the second/cluster level as there is no variation at the within level for the independent variable, 
𝑋𝑋, or mediators, 𝑀𝑀. The general model depicted in Eq (1)-(3) can be reduced to better fit in the 2-2-1 design 
(see Appendix B in Preacher et al., 2010). 

Regardless of the modelling framework, estimation and its inference of 𝑎𝑎𝑎𝑎 is central to mediation analysis. The 
most commonly used standard error of 𝑎𝑎�𝑎𝑎�  was derived by the delta method and is commonly employed by the 
Sobel test (Sobel, 1982), or equivalently, for construction of a symmetric confidence interval (CI) of the 
indirect effect. It is a conservative approach and hence has reduced power to detect statistically significant 
indirect effects (MacKinnon et al., 1995). Furthermore, the product of two normal random variables is no 
longer normally distributed and the indirect effect tends to be skewed, which implies asymmetric CIs are more 
likely. Consequently, this method is neither theoretically nor practically optimal. Various methods can be 
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employed to construct asymmetric CIs for the indirect effect 𝑎𝑎𝑎𝑎  with the only difference being how the 
sampling distribution of 𝑎𝑎�𝑎𝑎�  is obtained and used for inference (Preacher and Selig, 2012). A resampling 
bootstrap technique (Efron, 1979) is the most popular alternative to obtain asymmetric CIs, particularly for 
single-level mediated effects.  

For a clustered data structure, bootstrap resamples the data in the same manner as the original data was sampled 
from the true population (Fox, 2005; Huang, 2018). However, implementation can be problematic if the data 
structure is mixed within clusters, has multiple intervention groups and has longitudinal features. Such data 
structure exists in our data. For the multilevel mediation analysis, the Monte Carlo CI (MCCI) (Preacher and 
Selig, 2012) is a popular alternative. This method shares most advantages of the bootstrap methods. 
Additionally, a unique advantage compared to bootstrap methods is that it produces results very fast, regardless 
of the number of replications and only needs to fit the model once. Additionally, performance of MCCIs is 
comparable to that of bootstrap methods (MacKinnon et al., 2004; Preacher and Selig, 2012). Overall, this is a 
competitive and potentially the only practically feasible method in situations where it is not easy to conduct 
the bootstrap. 

To test the hypothesis that the impact of QTR intervention on student achievement in mathematics was 
mediated by teaching quality (measured by three-factor latent constructs), the MSEM 2-2-1 design enabled 
estimation of the 2-2 and 2-1 equations simultaneously with the built-in MLR estimation method that is robust 
to non-normality and non-independence. Data cleaning and MCCIs were performed in R (R Core Team, 2022) 
where the codes of MCCIs were adopted from Selig and Preacher (2008) and MSEM analysis was performed 
in Mplus Version 8.7 (Muthén and Muthén, 1998). 

Comparisons of group means on latent factors were conducted. Structured means analysis (Aiken et al., 1994; 
Dimitrov, 2006) was employed and requires the assumption of measurement invariance (MI) across 
intervention groups at both baseline and follow-up. As a prerequisite for accurate comparisons of groups on a 
latent construct, MI assesses whether the latent construct has the same meaning for each group (control and 
intervention). Technically, MI includes four steps, namely configural invariance (the initial unconstrained 
model), weak/metric invariance (factor loadings restricted to be equal across groups), strong/scalar invariance 
(factor loadings and intercepts restricted to be equal across groups) and strict invariance (factor loadings, 
intercepts and residuals restricted to be equal across groups). It is practically sufficient for a construct to reach 
strong scalar invariance for comparing group means on latent factors. 

3. RESULTS 

Table 2 displays the results of MI tests. The difference of χ2  for each comparison of adjacent models is 
statistically insignificant (p>0.05) indicating that a certain level of MI is met across intervention groups. With 
the assumption of strong invariance across intervention groups met at both baseline and follow-up, this ensures 
that comparisons of latent means across intervention groups can be made. Furthermore, this provides 
justification for restricting factor loadings and intercepts to be the same for the QTR and control groups at 
baseline and follow-up, respectively, in the MSEM.  
Table 2. Results of the difference of 𝝌𝝌𝟐𝟐 tests for MI across two intervention groups 

 

The global fit indices (RMSEA=0.01, CFI=0.96, TLI=0.96) indicate acceptable overall fit of this hypothesised 
model to the data, which is an essential precursor to examination of local fit, including estimates of parameters 
and standard errors. As shown in Figure 1, for the estimation of path a (i.e., the additional follow-up increase 
of teaching practice in QTR group compared to that in the control group), the difference of latent means at 
follow-up for each dimension was adjusted by its corresponding baseline latent construct. IQ was found to be 
statistically significantly greater by 0.50SD (SE=0.19, p=0.01) at follow-up in the QTR group compared to that 
in the control group; QLE increased by 0.21SD (SE=0.15, p=0.16) more at follow-up in the QTR group 
compared to that in the control group; and SIG statistically significantly increased by 0.57SD (SE=0.16, 
p=0.00) more at follow-up in the QTR group compared to that in the control group. 

 Model  𝜒𝜒2 (df) ∆𝜒𝜒2(df) P-value 
Baseline configural invariance 301.95 (148)   

 weak invariance 308.30 (159) 6.32 (11) 0.85 
 strong invariance 323.58 (170) 15.28 (11) 0.17 

Follow-up configural invariance 241.64 (148)   
 weak invariance 252.30 (159) 10.66 (11) 0.47 
 strong invariance 263.92 (170) 11.62 (11) 0.39 
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For the estimation of path b (i.e., the relationship between each dimension and teacher-level student 
mathematics scores at follow-up), student mathematics scores at baseline and follow-up were first separated 
into student- and teacher-level for bias reduction (Lüdtke et al., 2008). At the teacher level, student mathematics 
scores at follow-up were predicted by three pairwise correlated latent factors at follow-up, namely 𝐼𝐼𝑄𝑄2, 𝑄𝑄𝑄𝑄𝐸𝐸2 
and 𝑆𝑆𝐼𝐼𝐺𝐺2 , after adjusting for baseline student mathematics scores. Student follow-up mathematics scores 
statistically significantly increased by 0.23SD (SE=0.11, p=0.04) in classrooms, on average, for a single unit 
increase in IQ at follow-up in the QTR group; Student follow-up mathematics scores decreased by 0.06SD 
(SE=0.09, p=0.49) at classrooms, on average, for a single unit increase in QLE at follow-up in the QTR group. 
Student follow-up mathematics scores decreased by 0.07SD (SE=0.08, p= 0.39) in classrooms, on average, for 
a single unit increase of SIG at follow-up in the QTR group. For the statistically insignificant paths for QLE 
and SIG, we believe these dimensions may not conceptually be reflected by the test scores. 

As mentioned previously, the indirect effects 𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖 can only be examined at the same level, which was at the 
teacher level in our case. Student follow-up mathematics scores increased by 0.11 SD [95% MCCI: 0.01,0.20] 
more, on average, at the teacher level, mediated by IQ through QTR PD than that through business-as-usual 
PD in the schools sampled. However, QLE and SIG did not appear to have significant mediation effects, as 
judged by the respective 95% MCCIs. 

Figure 1. A simplified diagram of 
MSEM 2-2-1 design (teacher level 
only) with standardised estimates 
and standard errors for 
investigating the relationship 
between QTR intervention and 
student achievement in 
mathematics mediated by teaching 
quality (measured by three latent 
constructs). The orange paths 
indicate the additional increase of 
the corresponding dimension for 
the QTR group; the blue paths 
indicate the relationship between 
each factor and teacher-level 
student mathematics scores at 
follow-up. Global fit indices of the model are RMSEA=0.01, CFI=0.963, TLI=0.961, *𝑝𝑝 < 0.05. (Note: single 
arrows indicate the regression coefficients, circles indicate latent variables and double arrows indicate 
variance/covariance) 

4. CONCLUSION 

Multilevel mediation analysis in MSEM was investigated for this present study as a generalised framework 
that incorporates advantages of both LMM, which accommodates the multilevel data structure, and SEM that 
accommodates latent constructs. We found an additional 0.11 SD [95% MCCI = 0.01 0.20] of mediated effects 
attributed to teaching quality (through path IQ) at the intervention group on student mathematics scores in the 
intervention year. The only similar study we found was by Allen et al., (2011), which found an additional 
0.06SD [95% CI = 0.01,0.13] mediated effects of teaching quality between their intervention and student 
achievement scores in the post-intervention year. Our study served two purposes: to further investigate the 
hidden mechanism in regards to how QTR PD, teaching quality and student achievement jointly work based 
on evidence from Gore et al., (2017, 2021); and to provide an example of dealing with real-world complex 
educational data using the MSEM framework. 
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