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Abstract: Combat mission studies are critical for developing an understanding of combat behaviour as part 
of informed decision-making. Combat simulators are commonly used for this purpose, with the goal of 
understanding complex relationships, such as evaluating competing options, force design and operational 
requirements. As part of the simulation process, a collection of event series is recorded to capture the 
progression of combat over time and provide insight into causal relationships over the combat space. In this 
work we modelled such event series using Markov chains, to capture the unfolding pattern of events within a 
combat scenario to establish cause-and-effect relationships. The use of Markov chains is appealing here as this 
approach can be used not only to capture causal behaviours, but in other applications such as predictive 
modelling as part of an early warning system, to provide an advantageous tool for combat planning. 

A second, complementary focus taken here was to develop Markov chain models in such a way as to allow the 
identification of potentially anomalous combat event series. In general, anomaly detection helps to uncover 
unusual patterns in large data sets to provide critical information when there is a departure from typically 
observed behaviours. In the context of combat simulation and the analysis conducted here, a mechanism for 
the identification and thus detection of anomalous and non-anomalous combat event series is presented using 
Markov chains, to provide valuable insight into the differing characteristics of these series. 

Specifically, we studied the progression of a collection of simulated combat event series arising from three 
different combat scenarios: A, B and C. The simulated events were categorised as being in the state of either 
Movement (M), Detection (D), Shot (S) or Kill (K). A collection of event series comprising these four states 
resulted from repeated combat simulation, with 201 replications per scenario to yield 201 distinct event series 
per scenario. Replications for each scenario relied on a single set of non-repeated pseudorandom numbers to 
seed the simulator, so as to reflect the stochastically varying nature of a combat mission. Markov chain models 
were developed firstly for the exploration of combat progression from an overall perspective and then extended 
to consider a team-based perspective in terms of an offensive Blue and defensive Red team, to provide richer 
exploration of the event state-space. The Akaike Information Criterion and Bayesian Information Criterion 
were used to determine the appropriate Markov chain model order, with results showing a Markov chain model 
of order 0 was not appropriate, tacitly suggesting causality is present in the studied event series. A Markov 
chain model of order 1 was considered most appropriate for each scenario as well as for the overall and team- 
based combat analyses. To gauge the statistical distance between the resulting models the Kullback–Leibler 
divergence (KLD) and Earth’s Mover distance (EMD) statistics were calculated, indicating whether an event 
series could be considered anomalous or non-anomalous, in terms of combat progression. 

The steady-state transition probabilities governing the Markov chain models and derived from the event series 
data showed that the state of Movement had the highest probability in a typical combat scenario. The difference 
in transition between states for Scenarios A, B and C in general is negligible, however the difference in Scenario 
C is more pronounced. We found the suspected anomalous event series typically produced Markov chain 
models in which multiple transition probabilities took the value 0. For example, an anomalous event series for 
Scenario A indicated a total of 23 transitions between states were not reached during simulated combat; similar 
conclusions were drawn for Scenarios B and C. Interestingly, the suspected anomalous event series for 
Scenarios B and C overlapped in part, whereas the suspected anomalous event series for Scenario A formed a 
disjoint set to those for Scenarios B and C, indicating a difference in combat design being realised through 
simulation. Future work includes strengthening insight into combat scenarios to include the impact of 
modelling the interarrival time between combat events to augment combat mission understanding and 
potentially provide another mechanism for anomaly detection, as well as using the Markov chain models as 
part of an early-warning system in support of informed decision-making. 
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1. INTRODUCTION 

The research on modelling a series of events of interest, captured at measured time instants, has been long 
studied (Gregory et al., 1993; Tealab, 2018). Understanding such event series data, with respect to the 
mechanisms that govern transitions between events, has wide application across a number of areas including 
intrusion detection in cyber security (Haque, DeLucia & Baseman, 2017), weather prediction (Kaneriya et al. 
2018), credit card fraud detection (Srivastava et al., 2008) and health care management (Kulick et al., 2020). 
Identifying and understanding causality within such a series gives insight into factors that lead to differing sets 
of outcomes; such insight can be used to develop predictive models as well as optimise interventions to achieve 
desired results (Holland, 1998). For example, Kulick et al. (2020) inferred from causal analysis that long-term 
exposure to air pollution led to cognitive decline in older adults. Moreover, causal analysis of event series can 
be refined to separate typical, i.e. non-anomalous, patterns of transition between events, versus those which 
deviate from typical, i.e. anomalous transition patterns, to provide a richer understanding of the progression of 
an events series under different conditions.  

One application area where the study of causal relationships and identification of anomalous patterns is 
particularly valuable is in military applications. The insights enabled by not only identifying, but 
understanding, anomalous event series, gives the ability to recognise atypical patterns within a military exercise 
and implement corrective action if necessary. For example, the probability of an unsuccessful combat mission 
could be reduced if army personnel are able to identify and understand atypical patterns as they unfold during 
combat progression. Moreover, auxiliary knowledge in cause-and-effect relationships between actions taken, 
and associated outcomes during combat progression, equip personnel with the knowledge of what corrective 
actions should be taken for a more desirable final mission outcome, based on the current trajectory. Such 
analysis is attractive as it is able to provide a realistic perspective within combat progression to construct a 
narrative of what makes for a successful combat mission. 

In this paper we explore the dependencies within event series capturing combat progression to model potential 
causal behaviours, via a case study. We develop Markov chain models of event series produced by a high-
resolution, closed-loop, stochastic, discrete event entity-based land-force tactical combat simulator (Chau, 
2015), with Markov chains providing a framework to mathematically represent these series of events. We focus 
on characterising events reflecting non-anomalous and anomalous behaviours both in terms of overall combat 
progression, as well as combat progression by military team. The adaptability of Markov chains to provide a 
long-term view of the system supports understanding of how combat missions typically, and atypically, unfold. 

This paper is outlined as follows. In Section 2 we introduce a case study in which simulated combat event 
series are modelled using Markov chains, before investigating appropriate model parameters using maximum 
likelihood estimation via information criteria. In addition, we also introduce parameters to identify suspect 
anomalous replications within the case study. Section 3 presents the results of Markov chain modelling, 
including filtering combat events to accentuate causal relationships in terms of anomalous and non-anomalous 
behaviours, as well as by combat team. Finally in Section 4 we give our conclusions and future directions.  

2. A MARKOV CHAIN MODEL OF COMBAT SIMULATION 

2.1. Markov Chain Modelling of the Combat Event Series 

Combat simulators are widely used to replicate combat progression and inform decision-making in terms of 
competing options, characterised as design points for the combat simulator (Chau, 2015), to give rise to 
different combat scenarios. A design point, or scenario, is the selection of competing options such as the type 
of armoured vehicle, the protection level of military personnel, engagement range or factors requiring 
consideration in combat mission, plus other factors of interest such as topological representation and/or 
weather/lighting, to define the combat environment to be simulated. The simulator used here is a high-
resolution, closed-loop, stochastic, discrete event black-box simulator, with specified inputs and measured 
output performance metrics (Chau, 2015). The simulation is replicated 𝑅 = 201 times, seeded with a set of 
non-repeated pseudorandom numbers to reflect the stochastic nature of the combat mission. The same set of 
pseudorandom numbers were used for each scenario to facilitate comparison across scenarios. In this study, 
simulation was performed on three scenarios, A, B and C, aimed to reflect the different competing options for 
comparison as part of informed decision-making.  
Each simulated combat is recorded as a finite set of events. As time is recorded only when an event occurs, the 
event series is inhomogeneous over time. The combat event series can be denoted as being in state 
𝑠	𝜖	𝒮,	with	state-space		𝒮 = {𝑀,𝐷, 𝑆, 𝐾} for a given simulation time point 𝑡	𝜖	ℕ and the four events Movement 
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(M), Detection (D), Shot (S) and Kill (K). If the observed states are discrete, such that 𝑋!	𝜖	{1, … , 𝐾},	a discrete-
time stochastic process {𝑋!} can be described as Markov chain viz. 

𝑃 = {𝑋!"# = 𝑗|𝑋! = 𝑖, 𝑋!$# = 𝑖!$#, … , 𝑋% = 𝑖%) = 𝑃(𝑋!"# = 𝑗|𝑋! = 𝑖) 

with accompanying transition matrix 

𝑃&' = ℙ(𝑋("# = 𝑗|𝑋( = 𝑖), 𝑖, 𝑗 ∈ 𝑆, 𝑡	𝜖	ℕ 

where each element of 𝑃&,' is the maximum likelihood estimate for the 
probability event 𝑗 directly following event 𝑖. For each 𝑖 ∈ 𝒮, ∑ 𝑃&' = 1'∈𝒮 , with 
the characteristics of a Markov chain stipulating that over large value of 𝑛, all 
transition probabilities will converge to the stationary distribution 𝜋 = 𝜋𝑃 
(Anderson & Goodman, 1957). 

Figure 1 shows the general Markov chain for this state-space, illustrating the 
transition between the events 𝒮 = {𝑀,𝐷, 𝑆, 𝐾}, and their associated transition 
probabilities 𝑃&,' , 𝑖, 𝑗 ∈ {𝑀,𝐷, 𝑆, 𝐾} for each combat simulator replication. From 
Figure 1, it can be established that the transition of combat events from the 

combat simulator results in an ergodic Markov Chain in that the event transitions are both irreducible and 
aperiodic, where every event can be reached from every other event at irregular time intervals. Ergodic Markov 
chains are particularly attractive here as they converge to a unique steady-state probability in the long-run to 
support the stable analysis of the event series (Grinstead & Snell, 1997). 

2.2. Information Criterion  

A necessary step when building Markov chain models is to determine the model order to ensure the appropriate 
series history length is used during the modelling process. The trade-off between model order is important; a 
lower-order Markov chain requires fewer past observations whereas a higher-order Markov chain model has 
the potential to provide a more precise predictive value (Narlikar et al., 2013). 

Determining the order of a Markov chain is a well-studied area in the literature. Tong (1975) adapted the 
Akaike Information Criteria (AIC) developed by Akaike (1974) to allow comparison between different Markov 
chain models to determine the best fit. The AIC J𝑘L,-.M estimator of the Markov chain order is chosen such that 

𝐴𝐼𝐶J𝑘L,-.M =
𝑚𝑖𝑛

0 ≤ 𝑘 < 𝑚	𝐴𝐼𝐶(𝑘) 

where 

𝐴𝐼𝐶(𝑘) = 𝜂/,0 − 2(𝑠0-𝑠/)(𝑠 − 1). 

Here 𝜂 is the likelihood ratio statistic, 𝑘 is the 𝑘(1-order chain (𝑘 = 0,1,… ,𝑚 − 1) and 𝑚	the 𝑚(1-order chain 
with 𝑠 possible states. While widely used, the application of the AIC procedure is known to potentially 
overestimate the true order of Markov chain models regardless of sample size (Katz, 1981). For this reason, it 
is beneficial to consider a second information criterion when identifying the appropriate order of the Markov 
chain model. A widely-used alternative is the Bayesian Information Criteria (BIC) estimator of order J𝑘L2-.M, 
chosen as (Katz ,1981)    

𝐵𝐼𝐶J𝑘L2-.M =
𝑚𝑖𝑛

0 ≤ 𝑘 < 𝑚	𝐵𝐼𝐶(𝑘) 

where 

𝐵𝐼𝐶(𝑘) = 𝜂/,0 − (𝑠0 − 𝑠/)(𝑠 − 1) ln 𝑛. 

The estimators used in BIC are identical to the AIC method with 𝑛 factoring for sample size. A smaller AIC 
or BIC value is considered a better model fit, as these models penalise additional parameters.  

The results in Table 1 show a model of order 0 for Scenarios A, B, and C resulted in the highest AIC and BIC 
statistics, indicating a memoryless model is not appropriate here, thus tacitly suggesting there is some level of 
causality in the event series. Selecting the model order with the lowest AIC and BIC values suggests the data 
under study is best represented by a Markov Chain of order 1, to provide the best trade-off between the 
goodness of fit and the complexity of the model, since smaller values of AIC and BIC indicate a better model 
fit whilst avoiding overfitting.  
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Table 1. AIC and BIC statistics for Scenarios A, B and C for 𝒮𝒮. Selected model orders are bolded. 

 
Order 

Scenario A 
AIC 

 
BIC 

 
Order 

Scenario B 
AIC 

 
BIC 

 
Order 

Scenario C 
AIC 

 
BIC 

0 4104154 4104154 0 4238717 4238717 0 4162577 4162577 
1 3595619 3595687 1 3718050 3718118 1 3623089 3623157 
2 3625160 3625295 2 3722160 3722295 3 3625398 3625601 
3 3668553 3668756 3 3723091 3723294 4 3625408 3625679 

To construct a more comprehensive understanding of the event series, a team label of Blue or Red (B or R, 
respectively) was utilised for additional state-space segmentation. The analysis conducted here aims to create 
an intricate depiction of interactive events thus by distinguishing between teams it is possible to assign actions 
and mission outcomes that result in a more accurate representation of combat progression. 

To consider the delineation of events by teams, the expanded state-space 𝒮𝒮BR was considered: 

𝒮𝒮BR = {𝑀𝑀B, 𝑀𝑀R, 𝐷𝐷B, 𝐷𝐷R, 𝑆𝑆B, 𝑆𝑆R, 𝐾𝐾B, 𝐾𝐾R} 

with the subscripts B and R indicating the Blue and Red teams respectively. The event series displayed a 
disproportionate number of events of type 𝑀𝑀B and 𝑀𝑀R, dominating and consequently unduly influencing the 
Markov chain modelling process, thereby potentially obfuscating the probability of transitions between other 
events in the state-space. Thus to present a more realistic transition and minimise overinflating transitions 
between events 𝑀𝑀B and 𝑀𝑀R in the subsequent analysis, all 𝑀𝑀B and 𝑀𝑀R events prior to the first detection of any 
other event type were excluded. 

Table 2. AIC and BIC statistics for Scenarios A, B and C for 𝒮𝒮BR. Selected model orders are bolded. 
 

 
Order 

Scenario A 
AIC 

 
BIC 

 
Order 

Scenario B 
AIC 

 
BIC 

 
Order 

Scenario C 
AIC 

 
BIC 

0 7389408 7389408 0 7497371 7497371 0 7497371 7497371 
1 6292407 6292528 1 6401049 6401171 1 6401049 6401171 
2 6292425 6292668 2 6401067 6401311 2 6401067 6401311 
3 6292443 6292808 3 6401085 6401451 3 6401085 6401451 

Table 2 presents the AIC and BIC statistics calculated for the expanded state-space 𝒮𝒮BR. The results indicate 
that a Markov chain model of order 1 yields the smallest likelihood, although the difference between the first- 
and higher-order statistics is negligible. Again it is evident that a Markov chain model of order 0 is not suitable 
for the data, supporting further exploration of causal relationships in event the event series. 

2.3. Anomaly Detection 

A complementary consideration is the identification and modelling of potential individual anomalous 
replications for further insight into combat progression. To identify anomalous replications of event series, the 
Euclidean distance 𝑑𝑑 between all transition probabilities was calculated over all 201 replications. The average 
distance was then calculated, for each replication, as the deviation between the replication under consideration 
and all other replications. This process was repeated for each scenario. Figure 2 displays the distances observed 
in Scenario A, which shows there are potential outlier replications located in the right tail of the distribution. 
These potential outlier replications exhibit large distances to all other replications, which may indicate the 
occurrence of anomalous event series in these replications. 

An upper cut-off value for the identification of anomalous series was calculated based on the data distributions, 
such that all distances larger than the upper boundary formed at 𝑄𝑄4 + 1.5 × 𝐴𝐴𝑄𝑄𝑅𝑅 were considered anomalous, 
where 𝑄𝑄4 is the third quartile of the data and 𝐴𝐴𝑄𝑄𝑅𝑅 the interquartile range. The cut-off value for Scenario A was 

0.7845 with event series from 5 replications 
satisfying the criteria. A similar approach was 
used for Scenarios B and C with cut-off 
distances 0.8002 and 0.7957 respectively. For 
Scenario B, event series from 10 replications 
were suspected to be anomalous whereas 
Scenario C yielded 12 replications considered 
anomalous. For space considerations, the 
histograms are not included in this paper, 
although the top 5 replications with the largest 
deviation from the average for each scenario, 
are presented in Section 3. 
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2.4. Kullback–Leibler divergence (KLD) and Earth’s Mover distance (EMD) 

To determine whether there is a difference in either the combat scenarios or between replications, the Kullback– 
Leibler divergence (KLD) and Earth’s Mover distance (EMD) statistics were calculated. The KLD statistic is 
a measure of the difference between two probability distributions, indicating how one distribution diverges 
from the other, which can also be used as an indication of an anomaly (Zeng et al., 2014). For this research, a 
symmetric KLD statistic is used to compare the transition probability distributions between the three scenarios 
while an asymmetric KLD statistic is used for the comparison of transition probabilities derived from event 
series with and without suspected anomalous replications. A small perturbation of 𝜀𝜀 = 1 × 10-10 was added to 
the calculation of the KLD statistic which does not affect the overall results, but circumvents the issue of the 
existence of zero probabilities. Adding a perturbation in this manner also allows for the possibility of a 
transition to exist in the physical representation of combat progression, even though it was not observed in the 
simulated combat space. In contrast, the EMD statistic measures the distance between two probability 
distributions, accounting for the cost of transforming one distribution into its comparative distribution (Zhu et 
al., 2014) with large distances indicative of substantially large differences between the two probability 
transition matrices under consideration. 

 
3. RESULTS OF MARKOV CHAIN MODELS OF SIMULATED COMBAT EVENT SERIES 

The resulting steady-state transition probabilities for the Markov chain models for Scenarios A, B and C were 
empirically determined from the event series, with each scenario representing competing options in combat. 

Table 3. Steady-state probabilities for Scenario A, B and C 
 

Scenario A Scenario B Scenario C 
 M D S K  M D S K  M D S K 

M 0.9461 0.0394 0.0131 0.0014 M 0.9456 0.0385 0.0146 0.0013 M 0.9469 0.0380 0.0139 0.0013 
D 0.6051 0.3590 0.0357 0.0001 D 0.5973 0.3638 0.0388 0.0002 D 0.5923 0.3698 0.0377 0.0002 
S 0.6046 0.0925 0.3025 0.0003 S 0.6123 0.0918 0.2951 0.0008 S 0.5926 0.0921 0.3145 0.0009 
K 0.5339 0.1882 0.0560 0.2220 K 0.5142 0.2053 0.0648 0.2157 K 0.5335 0.2063 0.0677 0.1925 

Table 4. Symmetric KLD and EMD statistics for state-space 𝒮𝒮 and extended state-space 𝒮𝒮BR 

State-Space, S Symmetric KLD EMD  State-Space, S BR Symmetric KLD EMD 
Scenario A vs Scenario B 0.0009 0.0112 Scenario A vs Scenario B 0.0028 0.0330 
Scenario A vs Scenario C 0.0019 0.0184 Scenario A vs Scenario C 0.0050 0.0512 
Scenario B vs Scenario C 0.0010 0.0149 Scenario B vs Scenario C 0.0024 0.0365 

Table 3 summarises the steady-state probabilities for 𝑅𝑅 = 201 replications for Scenarios A, B and C with 𝒮𝒮 = 
{𝑀𝑀, 𝐷𝐷, 𝑆𝑆, 𝐾𝐾} while Table 4 presents the KLD and EMD statistics, which provide a representation of the statistical 
difference between the three scenarios. In general, the values for the extended state-space 𝒮𝒮BR are larger than 
those in the state-space 𝒮𝒮, indicating the distances between scenarios are greater in the extended state-space 
𝒮𝒮BR. The larger statistics in extended state-space 𝒮𝒮BR is due to larger dimensionality with the resulting 
symmetric KLD and EMD statistics are generally consistent for the state-space 𝒮𝒮 and extended state- space 𝒮𝒮BR. 

On the other hand comparison between scenarios shows the distance between Scenarios A and B is smaller 
than the distance between Scenarios A and C, which in turn is smaller than the distance between Scenarios B 
and C. This suggests the transition probabilities between states in Scenarios B and C are more alike when 
compared to those of Scenario A. Additionally, a more prominent dissimilarity in transition probabilities can 
be observed between Scenarios A and C, which suggests that Scenarios A and C exhibit less similarity in their 
underlying dynamics as opposed to Scenarios B and C. 

The steady-state probabilities in Table 5 for the extended state-space 𝒮𝒮𝐵𝐵𝑅𝑅 for Scenario A show there is 
approximately a 90% chance that if a Blue team member moves, the next state will be another movement by 
the Blue team (𝑀𝑀B → 𝑀𝑀B). However, the pattern of movement for the Red team contrasts this behaviour, with 
a 48% chance of transitioning from 𝑀𝑀R → 𝑀𝑀B and a comparative probability (42%) of transitioning from 𝑀𝑀R → 
𝑀𝑀R. In addition, if a Blue team member detects an opponent in the Red team, the probability the next event in 
the sequence will be a movement by a Red team member is approximately 6% (𝐷𝐷B → 𝑀𝑀R), in contrast to a 
detection made by a Red team member, where there is a 57% chance that the next sequence will involve 
movement by the Blue team (𝐷𝐷R → 𝑀𝑀B). These steady-state probabilities suggest there are differences in combat 
strategies between the Blue and Red teams. 
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Table 5. Steady-state probabilities for Scenario A for extended state-space 𝒮𝒮𝐵𝐵𝑅𝑅 
 

MB MR DB DR SB SR KB KR 
MB 0.9038 0.0374 0.0179 0.0254 0.0112 0.0034 9.0E-06 0.0009 
MR 0.4800 0.4174 0.0289 0.0422 0.0106 0.0097 0.0111 0.0001 
DB 0.4939 0.0623 0.3020 0.1030 0.0245 0.0141 0.0001 3.0E-05 
DR 0.5702 0.0738 0.0800 0.2424 0.0116 0.0218 0.0001 0.0001 
SB 0.5764 0.0678 0.0362 0.0255 0.2909 0.0030 0.0002 3.4E-05 
SR 0.4347 0.0807 0.0511 0.1111 0.0053 0.3166 0.0001 0.0004 
KB 0.4712 0.0937 0.1387 0.0507 0.0462 0.0057 0.1938 0.0000 
KR 0.3465 0.1545 0.0641 0.1283 0.0195 0.0401 0.0003 0.2466 

Table 6. Distance d, KLD and EMD statistics for suspected anomalous replications for Scenario A, B and C 
 

Scenario A d KLD EMD  Scenario B d KLD EMD  Scenario C d KLD EMD 
65 0.8191 0.2502 0.3392 51 0.9872 0.4318 0.6770 44 0.9101 0.3347 0.3387 

104 0.8171 0.2650 0.4850 98 0.9346 0.2834 0.5776 51 0.9586 0.4165 0.6580 
124 0.8309 0.2783 0.6411 110 0.8301 0.3244 0.3458 53 1.0262 0.4043 0.4918 
138 0.8292 0.2308 0.2761 189 1.0815 0.4729 0.6465 181 0.9571 0.4205 0.4265 
163 0.8661 0.2388 0.3994 191 1.1013 0.4471 0.5449 189 1.0656 0.4645 0.6160 

Table 6 summarises the Euclidean distance, d, KLD and EMD statistics of the top 5 suspected anomalous 
replications for Scenarios A, B and C. For example, replication 124 is suspected to be anomalous as it exhibits 
the highest KLD statistic for Scenario A, which highlights a significant deviation in transition probabilities 
produced by the associated event series, compared with the transition probabilities calculated across all other 
replications of the combat simulator. It is noteworthy that in both Scenarios B and C, replication 189 exhibits 
the largest KLD statistic and a high EMD statistic, indicating a substantial difference in transition probabilities 
in this case as well as replication 51. No such overlap was observed for Scenario A. 

Next, the transition probabilities of events for suspected anomalous replications were calculated. Table 7 
presents the transition probabilities for Scenario A, replication 𝑅𝑅 = 124. Notably, zero probabilities occur in 
23 transitions, particularly for states 𝐾𝐾B and 𝐾𝐾R; a feature that sets it apart from other replications. Another 
example is given in Table 8 for Scenario B, 𝑅𝑅 = 189. These transition probabilities were similar to those for 
replication 189, Scenario C, which was also suspected to be an anomalous replication. An interesting 
observation here is the transitions between 𝑆𝑆B and 𝑆𝑆R where it appears that the opposing teams do not shoot 
one another. Similarly interesting insights were observed for the remaining replications from Table 6, not 
shown here for space considerations, however indicating differences in causal behaviours across event series. 

 
Table 7. Transition probabilities for 𝑅𝑅 = 124 in Scenario A 

𝑅𝑅 = 124 MB MR DB DR SB SR KB KR 
MB 0.9224 0.0415 0.0068 0.0247 0.0012 0.0028 0.0000 0.0007 
MR 0.6257 0.3055 0.0049 0.0508 0.0000 0.0106 0.0025 0.0000 
DB 0.5616 0.0493 0.1675 0.1872 0.0197 0.0148 0.0000 0.0000 
DR 0.6307 0.0755 0.0445 0.2439 0.0013 0.0027 0.0000 0.0013 
SB 0.6364 0.0000 0.0606 0.1212 0.1818 0.0000 0.0000 0.0000 
SR 0.5862 0.1839 0.0230 0.0115 0.0000 0.1954 0.0000 0.0000 
KB 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
KR 0.5385 0.2308 0.0769 0.0769 0.0000 0.0000 0.0000 0.0769 

Table 8. Transition probabilities for 𝑅𝑅 = 189 in Scenario B 
 

𝑅𝑅 = 189 MB MR DB DR SB SR KB KR 
MB 0.9056 0.0405 0.0190 0.0192 0.0126 0.0028 0.0000 0.0001 
MR 0.5106 0.4114 0.0301 0.0306 0.0054 0.0010 0.0109 0.0000 
DB 0.5141 0.0587 0.2946 0.1098 0.0217 0.0011 0.0000 0.0000 
DR 0.6000 0.0861 0.1030 0.1952 0.0109 0.0024 0.0024 0.0000 
SB 0.6104 0.0576 0.0230 0.0096 0.2994 0.0000 0.0000 0.0000 
SR 0.6238 0.0594 0.0297 0.0495 0.0000 0.2376 0.0000 0.0000 
KB 0.4848 0.0000 0.0909 0.0303 0.1212 0.0000 0.2727 0.0000 
KR 0.0000 0.5000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 
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4. CONCLUSION 

In this paper we modelled a collection of combat event series using Markov chain models, to provide 
probabilistic insight into the unfolding of a combat scenario. We considered three different scenarios, A, B and 
C, representing competing options for a combat mission. Use of the Akaike and Bayesian information criterions 
suggested causality is present within the data, with a first-order Markov chain model developed for all event 
series. We augmented the study in two ways: first to include team membership and then to identify suspected 
anomalous event series, for which we also developed Markov chain models. 

Further research can extend upon this initial work. The current study differentiated between combat teams, 
however further granularity can be added by distinguishing between other combat components, e.g.  infantry 
and vehicles used. A further addition is to include time as part of the modelling process, such as the interarrival 
time between events, to further enhance the capacities of understanding the progression of a combat over time. 
Of particular interest would be time-based behaviours in combat action sequences from anomalous and non-
anomalous event series.  The work presented here thus provides the foundation for a more comprehensive 
understanding of combat scenarios to ultimately form part of an early warning system to inform effective 
decision making in combat, as well as in support of the development of military strategies. 
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