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Abstract: Rainfall is an important basic element for simulating the hydrological cycle system of a region or 
basin. Rainfall data with high accuracy and spatial-temporal resolution are of great significance for industrial 
and agricultural production, water conservancy development, drought and flood monitoring and prevention, 
which are the basis for understanding regional hydrological processes and exploring regional hydrological 
changes. How to obtain rainfall data with high spatial and temporal resolution is an important research topic in 
the field of hydrometeorology. 

Conventional rainfall measurement methods include specialized gauged station monitoring and remote sensing 
retrieval. Although traditional ground gauged network can obtain accurate rainfall at each station, they have 
obvious limitations due to the uneven distribution of ground stations and spatial discontinuity of rainfall data. 
Radar rainfall measurement and satellite rainfall estimation respectively have high resolution and wide space 
coverage, while their monitoring data often have significant errors. The rapid development of intelligent 
monitoring technology has brought significant possibilities for ubiquitous sensing of rainfall data (such as 
microwave links, camera sensing, portable sensors, etc.), which can be distributed with high spatial/temporal 
resolution and covering ratio. 

As we know, runoff simulation accuracy depends on the density of rain gauges and rainfall monitoring error 
quantity. Although ubiquitous sensing technology can effectively solve the problem of insufficient rainfall data, 
the accuracy of ubiquitous data is lower than measurements from dedicated rainfall gauges, which is also an 
important reason for its lack of application in practice. The challenge posed by ubiquitous sensing is a potential 
explosion of data collected by multiple groups for different purposes, with differing accuracy, precision and 
hence data quality. It is worth noting that existing research fell short of stating the need also to investigate what 
happens if the quality of data collected is inherently poor, should these large amounts of poor quality data be 
discarded (with huge effort of collection wasted)? Or should we spend effort on refining the collection 
methodology so that we can improve the data quality? 

This study focuses on the impact mechanisms of ubiquitous rainfall sensing on hydrology simulation. We 
explored how the ubiquitous monitoring site density, error quantity of sensing data and a combination of both 
factors affect the runoff simulation. The results show 
that : (1) The increased density of monitoring sites 
can effectively improve runoff simulation accuracy, 
especially when the monitoring site density is more 
than 100 km2/1 site; (2) The increase in error quantity 
increases the range of variability in runoff simulation 
performance, particularly for monthly runoff 
simulations; (3) the error quantity of ubiquitous 
sensing data should be controlled within 30%, and the 
density of the site over more than 20 km2/1 site. Our 
work is dedicated to proposing the applicability and 
providing a basis for ubiquitous sensing data in 
hydrological simulation. The resolution achievable 
using today’s sensors will be sufficient to improve 
hydrology models, an important continuation of 
this work. 
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Figure 1. The impact study framework for 

ubiquitous sensing data on hydrological simulation 
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1. INTRODUCTION 

With rapid urbanization and population growth, more problems in water resources make understanding the 
hydrological cycle a vital role in alleviating current and future water-related problems (Charles et al. 2000). 
Precipitation is the main driving force of the land part of the hydrological cycle, so accurate observation of 
precipitation is the key to these necessary improvements. However, recent years have seen a gradual decrease 
in investment in hydrological monitoring networks around the world, leading to problems such as insufficient 
monitoring data and irregular monitoring frequency, especially in remote areas or basins requiring monitoring 
of specific hydrological elements (Mazzoleni et al. 2017). So, precipitation observation and retrieval are still 
considered scientific challenges (Christian et al. 2019). 

The traditional rainfall station has high construction, maintenance and management costs, and it is difficult to 
build stations in high-altitude, low-temperature and urban dense areas, and there are limited observation points 
that cannot truly reflect the spatial distribution of precipitation (Vladislav et al. 1999). Weather radar has a 
monitoring blind zone, obstacles affect the accuracy, and the low-altitude measurement error is large; The 
construction investment intensity is large, and the maintenance and management costs are high (Ulbrich et al. 
1999). In terms of satellite remote sensing, satellite remote sensing can provide global rainfall observation data 
with different temporal and spatial resolutions, which provides a data basis for global change research and 
application, but there are also some problems, such as non-real-time rain measurement, low spatial resolution, 
3 hours lower temporal resolution, poor inversion accuracy in middle and high latitudes and complex terrains 
(cities, mountainous areas, etc.). There is a serious lag that cannot meet the real-time needs of emergency 
processing (Hou et al. 2014; Gaona et al. 2017). Therefore, the high spatial and temporal resolution of rainfall 
data is still a challenge. In order to avoid the loss of hydrological information, it is necessary to explore cost-
effective methods of data collection, especially in the context of diminishing resources where there is an urgent 
need to find new and reliable means of hydrological data collection to ensure the availability of extensive and 
continuous data sets. 

With the advances in technology, small and low cost sensors are being embedded in every-day consumer 
products, including automobiles, hand-held devices (including cellular telephones), smart buildings, and traffic 
management systems (Hill et al. 2019). Sensors are becoming ubiquitous, generating data at an unprecedented 
rate and scale (Chen et al. 2022; Pan et al. 2017). The advances in ubiquitous sensing present an emerging 
opportunity to improve our capability to monitor the weather. Very recently, ubiquitous sensors, including 
smart phones (Yin et al. 2022), surveillance cameras (Lee et al. 2022), microwave communication links 
(Chwala and Kunstmann. 2019) and vehicle-based automatic windshield wiper sensors (Rabiei et al. 2016) 
have been explored for quantitative rainfall measurement. However, there are certain errors in the retrieval of 
rainfall through the ubiquitous sensing method. For example, based on the quantitative detection of rainfall 
intensity from images, that is, from images taken under rainy conditions, this method can be effectively applied 
to actual rainfall events, but the error is about 25%; The average absolute percentage error of the method for 
measuring rainfall intensity under real world conditions based on video collected by ordinary surveillance 
cameras is 21.8% (Allamano et al. 2015); Microwave link networks with different structures have different 
retrieval effects for different rainfall fields, the relative deviation of rainfall intensity retrieved by the 
microwave link rainfall retrieval model is mostly within 15% (Jiang et al. 2019). It is expected that the accuracy 
of ubiquitous sensor of rainfall measurements is lower than measurements from dedicated rainfall gauges. It 
can be seen that although the ubiquitous sensing means can make up for the shortcomings of the limited 
traditional measuring station and low resolution, there is still a certain range of errors, which is also an 
important reason for its lack of application in practice. It is worth noting that existing research fell short of 
stating the need also to investigate what happens if the quality of data collected is inherently poor, should these 
massive amounts of poor quality data be discarded (with huge effort of collection wasted)? Or should we spend 
effort on refining the collection methodology so that we can improve the data quality? 

Therefore, this paper focuses on the impact of ubiquitous sensing of rainfall data on hydrological simulation, 
one that is cutting-edge research to advance the application of ubiquitous sensory data. We are intended to 
achieve two main objectives: firstly, to explore the mechanism by which errors in large amounts of ubiquitous 
sensing data affect the hydrological cycle simulation; and secondly, to propose the applicability in the 
monitoring process of ubiquitous sensing means. 

2. METHOD 

2.1. Implementation of the framework 

In addition to a large amount of supplementary monitoring data, ubiquitous sensing of rainfall data also brings 
uncontrolled errors. The impact mechanism of the abundant sensing data with errors on hydrological simulation 
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is unclear. Therefore, this study explores whether sensing data can contribute to improving simulations of 
hydrological models. Two variables of station density and ubiquitous sensing inversion error were selected for 
simulation by the SWAT model, to obtain the optimal distribution density and acceptable error range of the 
station. The detailed analysis method is summarized in the following steps and the flowchart is shown in 
Figure 2. 

Step 1: Preparation of 
rainfall data sets. Design 
rainfall datasets with single 
factor variation and dual factor 
variation for monitoring site 
density and error quantity.  

Step 2: Build the hydrology 
model. The hydrology model is 
employed for simulating the 
rainfall-runoff process. 
Meanwhile, the model 
parameters are calibrated using 
historical runoff data. 

Step 3: Impact analysis. This 
paper analyzes the relationship 
between monitoring site density 
and runoff error, monitoring 
errors and runoff error, and site 
density and monitoring errors 
and runoff error by comparing 
simulated results. 

Step 4: Applicability evaluation. The simulation will be used to explore the tradeoffs between increasing 
spatial density of the ubiquitous sensors and increased sensing errors.  

2.2. Hydrology model 

SWAT model is a semi-distributed physically based hydrological model, which was developed by the United 
States Department of Agriculture (USDA). The model can use the spatial data obtained by GIS and RS to 
conduct numerical simulations of large-scale and complex rivers under various soil, land use, climate 
conditions, and human activities. The advantages of this model are that it has strong physical mechanisms, high 
computational efficiency and high accuracy. The model needs to input digital elevation data (DEM), land use 
data and soil type, as well as meteorological and flow data of monitoring stations, and then automatically divide 
the sub-basin and hydrological response unit (HRU), and separately calculate and simulate each HRU. 

SWAT water movement calculations include SCS and Green-Ampt models. Among them, the SCS runoff 
curve number method is used more, and the model has three basic assumptions: the existence of the maximum 
soil water storage capacity S; The ratio between the actual water storage F and the maximum water storage 
capacity S is equal to the ratio of the difference between runoff Q and rainfall P and initial loss Ia. The 
relationship between Ia and S is linear. The rainfall-runoff relationship is expressed as follows : 

𝐹𝐹
𝑆𝑆

=
𝑄𝑄

𝑃𝑃 − 𝐼𝐼𝑎𝑎
 

𝐼𝐼𝑎𝑎 = 𝑎𝑎𝑆𝑆 

where a is a constant, which is generally taken as 0.2 in SCS models. It is noteworthy that relative parameters 
calibration of the SWAT model is carried out by SWAT-CUP based on the observed data. 

2.3. Experimental protocol 

The spatial distribution of rainfall monitoring sites largely determines the accuracy of rainfall simulation. After 
the study area is selected, the grid is divided according to the density of monitoring stations in the study area. 
Establishing a benchmark for spatiotemporal distribution of rainfall based on national rainfall gauges and the 
Kriging interpolation method. Then, N different monitoring station network densities and spatial distribution 

 
Figure 2. Flowchart of the influence study of ubiquitous sensing of 

rainfall data on hydrological simulation 
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modes are set up to evaluate the difference of rainfall process under different monitoring station network 
density and spatial distribution mode, and clarify the impact of monitoring site density on runoff simulation.  

At the same time, different ubiquitous sensing methods have different error ranges, which increases the 
uncertainty of the rainfall process. This paper considers M error modes and assumes they all follow normal 
distribution functions. Introduce random error into the benchmark rainfall data of N station schemes by the 
Monte Carlo sampling method, the new rainfall data as ubiquitous sensing data samples. These ubiquitous 
sensing sample data are without the limitation of system multi-dimensionality, multi-factor and other 
complexity. Finally, based on the simulation of the SWAT model, the optimal error range of the ubiquitous 
data is obtained. 

3. STUDY AREA AND DATA 

3.1. Study area 

In this paper, Jianjiang River Basin is selected, 
which is a tributary of the Yangtze River, located in 
Duyun City, Guizhou province, and its watershed 
area is 2,158.8 km2. The watershed altitude ranges 
from 589 to 1,938 m above mean sea level (as 
shown in Figure 3). The headwaters originate from 
Doupeng Mountain and flow 91.2 km through 
Duyun city. The area receives an average annual 
precipitation of 1,431 mm, with pronounced 
seasonality.  

The available streamflow and meteorological 
information of the Jianjiang River Basin is limited. 
The available climate data from the Duyun 
meteorological station including daily values of 
maximum and minimum air temperature, solar 
radiation, relative humidity, and wind speed were obtained from the National Science and Technology 
Infrastructure of China Meteorological Administration, and are used as meteorological input variables to the 
SWAT model. It should be noted that the calibration parameters of SWAT model of this study area can refer 
to the author’s previous research (Wang et al. 2019). 

3.2. Rainfall data 

In this paper, we take the 2012 rainfall data as an example to study the impact of ubiquitous sensing rainfall 
data on hydrological simulation. From Figure 4, the rainfall distribution in the basin gradually decreases from 
upstream to downstream, with a maximum difference in rainfall of nearly 150mm. However, there are only 
four rainfall gauged stations in the basin, which are concentrated in urban areas in the upper of the basin (the 
green points in Figure 4). As we know, the observed data from four gauged stations are not sufficiently 
representative. Further, we analyze whether the abundance of ubiquitous sensing data contributes to 
hydrological modelling. 

Using data from surrounding gauged stations, the rainfall data for the basin was interpolated at 0.02°intervals 
between latitude and longitude by the Kriging interpolation method (as seen in Figure 5). The 498 points in 
Figure 5 are assumed ubiquitous monitoring sites which is the basic scheme. There are 12 ubiquitous 
monitoring site density gradients (T1～T12) set up based on the assumed monitoring sites network layout (in 
Table 1).  

Considering the different error quantities of monitoring sites, five error schemes (E1~E5) are set in this paper, 
which are shown in Table 1. The random samplings of the rainfall datasets are based on the normal distribution 
of the E1~E5 scheme. To avoid accidental sampling, the number of iterations is 500. Finally, we explore the 
impact of abundant ubiquitous monitoring sites with different errors on hydrological simulation, which 
schemes combine the T1~T12 and E1~E5. 

  

 
Figure 3. The DEM of Jianjiang River Basin in 

Guizhou province of China 
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Table 1. The impacts of the density and error quantity of ubiquitous monitoring sites on runoff simulation 
Schemes Variables 

Basic scheme 498 ubiquitous monitoring sites without error 

Actual gauged scheme 4 actual gauged stations without error 

The density of 
ubiquitous monitoring 
sites scheme 

T1:498 sites, 4 km2/sites; T2:248 sites, 9 km2/sites; T3:123 sites, 18 km2/sites; T4:99 sites, 22 km2/sites 
T5:49 sites, 44 km2/sites; T6:34 sites, 63 km2/sites; T7:25 sites, 86 km2/sites; T8:19 sites, 113 km2/sites 
T9:12 sites,180 km2/sites; T10:9 sites, 240 km2/sites; T11:7 sites, 308 km2/sites; T12:5 sites, 430 km2/sites 

Error quantity of 
ubiquitous monitoring 
sites scheme 

E1: ubiquitous monitoring sites with 10% error;   E2: ubiquitous monitoring sites with 20% error 
E3: ubiquitous monitoring sites with 30% error;   E4: ubiquitous monitoring sites with 40% error 
E5: ubiquitous monitoring sites with 50% error 

Dual variation scheme 
of density and error 
quantity 

T1~T2 combined with E1~E5 

 

4. RESULTS AND DISCUSSION 

4.1. Effect of monitoring sites density on simulating runoff 

The effect of the density of ubiquitous sensing data on model enhancement is analyzed by simulating T1 to 
T12 schemes without error. In this paper, we adopted the Nash-Sutcliffe model efficiency (NS) and Root Mean 
Squared Error (RMSE) to evaluate the performance and quantify the impact of the simulation. From Figure 6, 
it is not difficult to find that with the increase in monitoring density, the accuracy of runoff simulation continues 
to improve, especially for monthly runoff simulation. At the same time, it can be concluded that when the 
number of sites is 9 (density: about 250 km2/sites), the monthly runoff simulation effect increases rapidly, and 
then the increase slows down; The turning point of daily runoff simulation is at the point where the number of 
monitoring sites is equal to 19 (density: about 100 km2/sites).  

 
Figure 5. Ubiquitous monitoring network layout 

    
Figure 6. The relationship between monitoring density and runoff simulation performance (the X-axis and Y-

axis represent the number of monitoring sites and performance evaluation indicators, respectively ) 

 
Figure 4. Spatial distribution of 2012 annual 

rainfall of Jianjiang River Basin 
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4.2. Effect of sensing rainfall errors on simulating runoff 

Figure 7 shows an example of the different error schemes under 19 monitoring sites in Jianjiang River. As the 
amount of error increases, the performance variation range of runoff simulation continues to increase. For the 
RMSE index, the monthly runoff simulation performance is better than the daily runoff simulation under 
different error schemes. However, for NS, when the error quantity is greater than 30%, daily runoff simulation 
performs better than monthly runoff simulation. As can be seen the trend orange and blue lines  from Figure 
7 (b), it is better to control the error range at 30% (turning point). 

4.3. Effect of the coupling effect of monitoring sites density and sensing errors on simulating runoff 

Based on 4.1 and 4.2 an analysis of how the dual variation in rainfall sensing data volume and error affects the 
hydrological simulations is presented, and thus the scope of application of ubiquitous sensing techniques. From 
Figure 8, when the number of monitoring sites is less than 100, the sensing error has a large random effect on 
the runoff simulation; Conversely, for monitoring sites at less than 20 km2/site, the effect of error on runoff 
tends to stabilize. When the error quantity is greater than 30%, the range of influence on the range of NS 
variation is larger and NS performance decreases rapidly. In particular, for the RMSE metric, the range of 
RMSE variation is greatest when the error equals 30%. Therefore, in the practical application of ubiquitous 
sensing data, the error quantity needs to be controlled to within 30%, while the density of the monitoring sites 
should be less than 20 km2/site. 

  
(a)          (b) 

Figure 7. The relationship between monitoring error quantity and runoff simulation performance 

 

 
Figure 8. The impact of variation of monitoring density and error quantity on runoff simulation performance 
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5. CONCLUSION 

This paper quantified the impact of different levels of error and different spatial densities of ubiquitous sensing 
data on a hydrology model. Through a case study conducted in the Jian-jiang River basin, the following 
conclusions can be drawn: (1) The increased density of monitoring sites can effectively improve runoff 
simulation accuracy, especially when the monitoring sites density is greater than 100 km2/site; (2) The increase 
in error quantity increases the range of variability in runoff simulation performance, particularly for monthly 
runoff simulations; (3) the error quantity of ubiquitous sensing data should be controlled within 30%, and the 
site density of more than 20 km2/site. This study is only a preliminary exploration, these conclusions may be 
limited by the random distribution of errors, uniform parameters, the length of the rainfall series and so on. 
Therefore, it is necessary to conduct more comprehensive research in the follow-up research. Our work is 
dedicated to proposing the applicability and providing a basis for ubiquitous sensing data in hydrological 
simulation. The resolution achievable using today’s sensors will be sufficient to improve hydrology models, 
an important continuation of this work. 
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