Developing satellite-derived nitrogen stable isotope ratio grids to globally monitor terrestrial plant nitrogen availability for 1984–2022

<u>Jinyan Yang</u>^a, Haiyang Zhang^b, Yiqing Guo^c, Randall J. Donohue^a, Tim R. McVicar^a, Simon Ferrier^a, Warren Müller^a, Xiaotao Lü^d, Yunting Fang^{e,f}, Xiaoguang Wang^g, Peter B. Reich^{h,i}, Xingguo Han^{j,k} and Karel Mokany^a

^a CSIRO Environment, Canberra, Australia ^b College of Life Sciences, Hebei University, Baoding, China ^c CSIRO Data61, Canberra, Australia ^d Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China ^e CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China ^f Qingyuan Forest CERN, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China ^g College of Environment and Resources, Dalian Minzu University, Dalian, China ^h Institute for Global Change Biology and School for Environment and Sustainability, University of Michigan, Ann Arbor, United States ⁱ Department of Forest Resources, University of Minnesota, St Paul, United States ^j State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China ^k University of Chinese Academy of Sciences, Beijing, China Email: jinyan.yang@csiro.au

Abstract: Nitrogen (N) availability regulates the productivity of terrestrial plants and the ecosystem services they provide. There is evidence for both increasing and decreasing plant N availability in different biomes, but the data are fragmentary. How plant N availability responds to climate change, N deposition and increasing atmospheric CO₂ concentration remains a major uncertainty in the projection of the terrestrial carbon sink. The foliar N stable isotope ratio (δ^{15} N) is an indicator of plant N availability but its usefulness to infer long-term global patterns has been limited by data scarcity.

Combining ground-based $\delta^{15}N$ and Landsat spectra, we derived annual global maps of Landsat-based foliar $\delta^{15}N$ as estimates of plant N availability during 1984–2022 using a random forest ensemble learning method. The model consistently achieved low error (NRMSE < 0.2) across continents and biomes. We found significant decreases in plant N availability for 44% and increases for 16% of vegetated Earth's surface with large spatial heterogeneity. Plant N availability mostly declined in woody-dominated ecosystems but increased in herbaceous-dominated ones. These $\delta^{15}N$ trends were consistently and negatively correlated with the trends of Normalised-Difference-Vegetation-Index as they varied across ecosystems, suggesting increasing plant cover could have led to decreasing plant N availability. Our results indicate possible future reductions in plant N availability in many terrestrial ecosystems and provide a useful way to monitor those changes globally.

Keywords: Plant nitrogen availability, reflectance, vegetation monitoring