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Abstract: Advancement in the collection and storage of data, alongside the modern emphasis of automated 
decision making have lead to datasets growing exponentially in size and complexity over the last four decades. 
Lever- aging excessively large data through traditional machine learning can lead to exorbitant run times, 
storage and general computational bloat, with the trained model potentially being sub-optimal (Kohavi & John 
1997). Dimensionality reduction through selection and extraction are common methods of mitigating these 
issues. Extraction methods map the existing data to lower dimensional space whilst attempting to maintain the 
characteristics of the original dataset, whilst selection methods attempt to take a representative subset of the 
data. Alongside elevating the technical computational bloat, data reduction provides a parsimonious 
representation of the dataset, resulting in comparably simpler models which are more intrinsically interpretable. 
Therefore, data reduction techniques are included within Explainable Artificial Intelligence (XAI) (Barredo 
Arrieta et al. 2020). With the increasing reliance on automated decision making, the number of publications 
related to XAI has increased rapidly over the last ten years. A machine learning model should be not only 
accurate, but also transparent with an interpretable logic for proposed predictions. Therefore, machine learning 
models are used for both predictive purposes and retrospective data exploration and analysis. 

SpFixedIS is a fixed wrapper instance selection algorithm (Yeo et al. 2023), wherein the number of instances to 
select are user defined. The algorithm attempts to find the most representative instances of set cardinality with 
respect to a machine learning model and corresponding performance metric. Within a predictive context, the 
instances selected through SpFixedIS are able to accurately predict unforeseen observations. Within this paper, 
we examine the instances selected through SpFixedIS within the application of retrospective explainable data 
exploration through visualisation. The proposed method will reduce the instance space using SpFixedIS and 
then map the feature space to two dimensional space using a feature extraction method for ease of visualisation. 
The feature extraction methods presented are Principal Component Analysis (PCA) and Uniform Manifold 
Approximation and Projection (UMAP) (McInnes et al. 2018). 

SpFixedIS uses a 1-Nearest Neighbours classifier with prediction accuracy as the wrapper and performance 
metric respectively on the Primate Splice-Junction Gene Sequences DNA dataset. The stability of the instances 
selected through SpFixedIS across a changing number of instances is examined through the lens of the instances 
themselves, the unselected instances and through the feature extraction projections in the form of cluster 
centres. The expected behaviour is exhibited as the number of instances increases with the inherent noise within 
the dataset being transferred from the unselected instances to the selected instances subset. The reduced dataset 
cluster centres gravitate away from the cluster centres of the full dataset when the number of instances 
decreases, therein providing more separation between different classes, however this difference is not reflected 
uniformly through the feature projections. The projections reveal insight into the structure of the data that 
metrics alone do not. The UMAP representation provided insight into repeated selection of outlier instances 
which were repeated identical instances within the dataset. The juxtaposition of instances selected and ease of 
visualisation provided through feature extraction allow for a holistic view of the instances selected. Therefore, 
the instance could be visualised and identified within the grand structure of the full dataset. This study is 
motivated by future work in relation to structure-based kinase peptide interactions in order to locate outliers 
and unique structures for future drug discovery (Liu et al. 2020). 
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1 INTRODUCTION

Modern datasets are growing in size and complexity, which subsequently leads to new challenges and issues
for conventional machine learning and data mining methods. These problems can be broadly summarised
as two distinct issues. The first issue is technical and pertains to computational bloat, including excessive
storage space and run times. Whereas the second and potentially more serious issue is sub-optimal models,
which become present in the form of over-fitting, fitting noisy entries or redundant features. Reduced model
performance occurs when the dataset is excessively large in both the feature space (Kohavi & John 1997) and
instance space (Yeo et al. 2023). Dimensionality reduction is a common method for mitigating the aforemen-
tioned issues. Data reduction techniques can be differentiated into two distinct categories, namely selection
and extraction techniques. Selection algorithms aim to select a subset of the available data, whereas extrac-
tion methods generate new entries in place of the existing dataset. Selection and extraction algorithms can be
applied to both features and instances.

Dimensionality reduction, specifically selection methods, are within the Explainable Artificial Intelligence
(XAI) toolbox albeit for different purposes within the instance and feature space (Barredo Arrieta et al. 2020).
The XAI field of research is becoming increasingly important as more reliance is placed on automated de-
cision making. A decision produced by artificial intelligence must not only be accurate but also provide
an interpretable logic allowing for transparent decision making. Broadly, there are two categories of XAI
methods, namely post-hoc and intrinsically interpretable methods. Post-hoc methods perform an additional
procedure after the model is established in order to provide insight to a prediction or model logic, well-known
methods include Local Interpretable Model Agnostic Explanation (LIME) (Ribeiro et al. 2016). Whilst veri-
fying the evaluation of post-hoc methods can be done through external means and domain knowledge (Adadi
& Berrada 2018), post-hoc methods, specifically post-hoc feature importance methods, have inconsistent and
mixed efficacy representing either the models or dataset (Yeo et al. 2022). On the other hand, the intrinsically
interpretable instance selection purpose is two-fold in XAI, the instances themselves are a simpler representa-
tion of the dataset and the models based on a smaller subset tend to be simpler and therefore more interpretable.
That is, the improved explainability may be viewed through the lens of the data itself or through the model.

Recently we proposed SpFixedIS (Yeo et al. 2023), a fixed instance selection algorithm which allowed for
a user specified number of instances to select. Through a stochastic optimisation framework, SpFixedIS at-
tempts to select a subset of instances which optimise a given performance with regards to a particular machine
learning model. SpFixedIS is able to train models which were able to outperform or maintain a statistically
equivalent predictive performance once a sufficient number of instances were selected. Therein, a representa-
tive mapping of the feature space was obtained through the intelligent selection of instances with regards to
a classification model. The algorithm was explored from the perspective of model performance, specifically
accurately predicting previously unseen data.

In this study we propose the novel procedure of coupling instance selection and feature extraction in order
to analyse and examine the selected instance subset of instance selection from the lens of the data itself and
retrospective data exploration. The reduced dimensionality through feature extraction enables the ease of
visualisation and provides a simple means to verify the selected instances are representative of the full dataset.

2 BACKGROUND

2.1 Fixed Instance Selection

SpFixedIS is a fixed, wrapper instance selection method. A fixed instances selection method is an algorithm
which seeks to select a subset of instances with a predefined cardinality, such that each iteration possesses a real
valued solution with this pre-set cardinality. Generally, instance selection algorithms are seeking to optimise
two criteria, namely performance and compression. Different instance algorithms will prioritise performance
preservation over selecting a minimal subset. Fixed instance selection methods remove the compression con-
straint by setting the number of instances to select and seeking an optimal subset of a given cardinality. On the
other hand, the distinction between a filter or wrapper method dictates whether a model needs to be supplied
to the algorithm, specifically wrapper methods require additional models to be fitted during the learning pro-
cess whereas filter methods do not. Therefore, SpFixedIS requires a model with a corresponding performance
metric and the number of instances to select alongside the data.

The fixed instance selection wrapper method can be formalised as follows. Given a dataset, T , with n instances
and p descriptive features, a machine learning model, C, with a performance metric yC and the number of
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instances to select, k. The dataset can be represented as T = {X,Y }, where X is the n× p data matrix and Y
is the corresponding response feature of length n. Let S := S ⊂ T represent a subset of the instances to select
of fixed cardinality where |S| = k and conversely denote the remaining unselected instances as S′ := T\S.
Therefore we seek to find the optimal set of instances, X∗ which maximises yC with regard to the unselected
instances S′ such that

X∗ := argmax
S

yC(S
′).

The instances selected seek to generalise the remaining instances through correctly predicting these unse-
lected instances. However, changing k results in a different number of instances being selected and therefore
potentially different behaviours depending on the wrapper, C.

SpFixedIS treats the fixed instance selection as a combinatorial optimisation problem and follows a pseudo-
gradient descent framework to approach X∗. There is no closed form mathematical representation for yC ,
such that the search direction is defined as the secant from two randomly perturbed noisy measurements to the
current solution. Whereas the gain sequence is defined by an approximation of the Hessian matrix utilising the
Barzilai and Borwein method (Barzilai & Borwein 1988). For more details refer to Yeo et al. (2023).

2.2 Feature Extraction

Feature extraction methods involve projecting the existing features into a lower dimensional space whilst
attempting to maintain the characteristics of the original features. Two well-known feature extraction methods
were considered in this study, Principal Component Analysis (PCA) and the Uniform Manifold Approximation
and Projection (UMAP) (McInnes et al. 2018). PCA provides an orthogonal linear transformation to the
data whilst UMAP uses applied Riemannian geometry and algebraic topology to provide a non-parametric
transformation.

A recent study related to a visualisation framework which uses UMAP to produce explainable outcomes is
XMAP (Nguyen & Tran 2021). XMAP is a procedure which attempts to capture the distributions and topolog-
ical structures of data, define contexts, and build representations for classification tasks. The four steps during
the XMAP procedure are: data pre-processing, applying mapping techniques, learning topology and extracting
interpretable contexts. The mapping technique used in XMAP is UMAP in order to reduce the dataset to two
dimensions, then the topological learning is an instance extraction method based on nodes which behave like
cluster centres is then performed on the UMAP projections. The nodes are then evaluated using information
theoretics to produce explanations similar to the information provided by a cluster analysis. XMAP provides
an interesting framework which essentially performs two extraction techniques, first in the feature space then
in the instance space, followed by unpacking the information provided by the extraction methods. The general
drawback of extraction techniques is the interpretability of the reduced dataset can be hindered by the pro-
jections, conversely selection methods are taking a subset of the available data rendering the interpretability
intact.

3 METHODOLOGY

3.1 DATASETS

The dataset we used is the Primate Splice-Junction Gene Sequences (DNA) dataset from the OpenML Suite
(Bischl et al. 2019) with the raw data sourced from the UCI machine learning repository (Dua & Graff 2017).
The DNA dataset is a real world dataset composed of 3186 observations, 180 descriptive binary features and
3 classes for the target feature. Although not delved into during this study, it is interesting to note the problem
description of this dataset. DNA sequences were taken from primates in order to study splice junctions. During
the process of protein creation, splice junctions are the points on a DNA sequence in which superfluous DNA
is removed. The parts of a DNA sequence retained after splicing are called exons and the discarded sequence
are called introns. The classification problem involves recognising the boundaries between exons and introns,
introns and exons and the third state which is neither.

3.2 Experimental Design

This study is focused on investigating the subset of instances selected with the SpFixedIS method through
the lens of feature extraction techniques. SpFixedIS selected a range of instances in increments of 50 whilst
using the original descriptive features. A 1-Nearest Neighbours model, with classification accuracy as the
performance metric, was used as the wrapper for SpFixedIS. 1-Nearest Neighbours was chosen due to being the
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most sensitive to instance selection. Classification accuracy was selected as there were no highly imbalanced
classes within the target feature.

The projections provided by PCA and UMAP were obtained for the full set of instances such that the full
structure of the dataset may be visualised and presented as a ground truth baseline. The selected instances
were displayed on the projected axis in order to give a clear indication of where the instances appear within the
latent structure of the dataset. It should be noted that the target feature is not included in the projections. The
cluster centres of the projections were also calculated for each class in order to examine the representativeness
of the selected subset of instances.

4 RESULTS AND DISCUSSION

Figure 1 presents the unselected accuracy and the mean accuracy from a leave one out (LOO) cross validation
over the selected instances. Figure 2 and Figure 3 present the instances selected by SpFixedIS projected into
two dimensional space by UMAP and PCA, respectively. The number of instances selected begin at 3,000
instances and halved each time, with the floor taken if it is not a multiple of 50. It is worth noting that the
50 instances displayed in Figure 2 are the same 50 instances displayed in Figure 3, the instances are the same
selected using SpFixedIS however projected into two dimensions using different methods. On the other hand,
Figure 4 shows the mean Euclidean distance between each cluster centres of the visualised reduced datasets.
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Figure 1. Unselected Accuracy and Mean Leave One Out (LOO) Cross Validation Accuracy across selected
instances on the DNA dataset.

The unselected accuracy reflects the selected instance’s ability to generalise the remaining instances within
the dataset through the lens of the model. Meanwhile, the LOO cross validation of the selected instances with
respect to nearest neighbours models provide a measure of purity from within the selected instances. This
interpretation changes when using non instance based techniques. These metrics show the trade-off across
selecting different number of instances in Figure 1.

Nearest neighbours models provide a clear distinction between useful and redundant instances, that is for any
given subset there are instances which constitute the decision boundary which ultimately form the predictions.
With the increase in the number of features, these boundary points tend to become more difficult to discern.
From 3000 to 1500 instances selected, the unselected accuracy increases to perfectly classifying the unselected
whilst the mean LOO cross validation accuracy decreases. That is, the bias-variance trade-off in the selected
instances, wherein the decision boundary is captured in its entirety at the expense of a potentially more par-
simonious model through reduced instances. Examining how the 3000 to 1500 instances appear through the
feature extraction methods, there does not appear to be much of a difference visually. This extends to the
750 instances selected for both UMAP and PCA, in which the subsequent larger subsets appear as a denser
variation. This interpretation is supported by the relative lack of movement in cluster centres between 750,
1500 and 3000 instances selected.

Shifting the attention to the smaller number of instances selected, the two accuracy measures in Figure 1 appear
to be more erratic. This noise can be mitigated with repeated runs. Regardless, a lower number of instances
provide a multitude of combinations to construct a similar decision boundary, such that the mean LOO cross
validation is inherently noisy. The instances selected by SpFixedIS not only attempt to reproduce the decision
boundary but also provide a representative mapping of the full feature set regardless of the number of instances
selected. This mapping is most evident in the projections with fewer instances selected, such that the selected
instances are not localised but spread to give an impression of the full projected dataset.

The cluster centres of the dataset when juxtaposed alongside the original cluster centres of the full dataset
provide a clear display of the selected instance behaviour with respect to the projected method. The cluster

1087



Yeo et al., Visualising instance selection for improved explainability using feature extraction

0

2

4

6

50 instances selected 150 instances selected 300 instances selected

8 10 12 14

0

2

4

6

750 instances selected

8 10 12 14

1500 instances selected

8 10 12 14

3000 instances selected

UMAP Embedding 1

U
M

AP
 E

m
be

dd
in

g 
2

Figure 2. UMAP Projections of SpFixedIS selected instances on the DNA dataset.

4

2

0

2

4

6

50 instances selected 150 instances selected 300 instances selected

5 0 5

4

2

0

2

4

6

750 instances selected

5 0 5

1500 instances selected

5 0 5

3000 instances selected

PCA Component 1

PC
A 

C
om

po
ne

nt
 2

Figure 3. PCA Projections of SpFixedIS selected instances on the DNA dataset.
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centres of each class gravitate away from those of opposing classes with the distance greater the fewer in-
stances are selected which occurs for both the non-linear UMAP and linear PCA projections. Relative to the
positions of the original cluster centres, the fewer the number of instances selected the further away the cluster
centres move. This behaviour is clearly seen in the difference in distance cluster centres presented in Figure
4, specifically the difference in the original features which provide an almost uniform distance between each
set of selected instances. This is the expected behaviour, the more instances selected the more the distribution
reflects that of the original dataset.
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Figure 4. Mean Euclidean distance difference in cluster centres.

The projections of the datasets themselves reveal insight into the structure of the data that metrics alone do
not. As a broad statement, there are overlapping clusters of each class with outliers which is evident within
both methods of feature extraction. The different instances selected using SpFixedIS are independent of one
another, such that the instances in the subset of 50 have no guarantee on being included within the subset of
150. However, it is interesting to note that within the UMAP projection SpFixedIS consistently selects what
appear to be displaced outliers away from the main cluster of instances. This is due to many of those perceived
outlier points being identical entries within the original dataset. SpFixedIS attempts to select a subset of fixed
size which can generalise the remaining instances through the lens of a model, therefore by selecting one of
these identical entries, the subsequent copies will be correctly classified. Therefore, the instances provided by
SpFixedIS and the ease of visualisation offered by feature extraction return a subset of representative instances
which can allow for an organised assortment of unique instances allowing for easier identification of insights.

In terms of comparing the UMAP projections to that of PCA, this is an interesting dataset due to the binary
descriptive feature combination. The different cluster centres for the PCA projections line up more closely
to the original difference in cluster centres in Figure 4 compared to that of UMAP. However, the UMAP
projection in Figure 2 provide insight through the induced structure into displaced outliers which are not
present within the PCA projections in Figure 3. Although, PCA has the additional benefit of the projections
being a linear combination of the original instances rendering it highly interpretable, the projections themselves
need not be inherently interpretable with the instance space reduced and the original features intact.

5 CONCLUSIONS AND FUTURE WORK

This paper presents the fixed instances selected by SpFixedIS projected into two dimensional space using the
feature extraction techniques UMAP and PCA. The projections provide a means to visualise the instances
selected with respect to their structure within the full dataset, allowing for a holistic view of the instances se-
lected. The instances provided by SpFixedIS coupled with the ease of visualisation through feature extraction,
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allow a subset of representative instances to be arranged as an organised assortment in order to produce rapid
identification of insights.

This study and the dataset selected for this study were motivated by future work related to Kinase Protein
interactions (KPIs) (Bradley & Beltrao 2019). Kinase proteins are involved in signalling and maintaining cell
behaviour (Cunningham et al. 2017), such that any deviation may result in a range of diseases including cancer
(Gross et al. 2015). Our future study will analyse KPIs using machine learning, specifically structure-based
kinase peptide interactions, from a dataset constructed from protein kinase structures curated from the RCSB
Protein Data Bank (Basse et al. 2016). The dataset is composed of binary descriptive features with 6 classes
of the target feature corresponding to the 6 most populous human kinase groups (Manning et al. 2002). The
method proposed in this paper will be applied and extended to allow for rapid identification of unique protein
structures, thereby potentially helping to identify protein structures within different Kinase groupings by a
domain expert. This research is in progress to ultimately identify so called outliers and unique KPI structures
for future drug discovery (Liu et al. 2020). Our results will be compared to deep learning mixture analytics
and classification performed on a reduced data set of the KPI data (using only peptide interaction information)
in collaboration with Marseilles University (Hudson et al, in prep).
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