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ABSTRACT

We consider a call center simulation model with two
types of traffic and two types of agents. Outbound calls
are served only by blend agents, whereas inbound calls
can be served by either inbound-only or blend agents.
The objective is to find a staffing policy that satisfies
some service requirements, in particular the probability
that a waiting time of an incoming customer is smaller
than some threshold. In this work, we apply GoLo, an
optimization-via-simulation algorithm which consists of
a global guidance system, a selection-of-the-best proce-
dure and local improvement.

1 INTRODUCTION

We consider a telephone call center with two types of
traffic, inbound and outbound, and two types of agents,
inbound-only and blend. The number of agents of each
type can vary from day to day and within each day.
The inbound calls arrive according to a Poisson process
whose rate may itself evolve as a stochastic process.
When traffic is too high, new inbound calls must wait in
a queue. For inbound traffic, we consider abandonment,
i.e., some customers may not stay in the queue once
learning that they are put on hold, or they may leave
after spending some time waiting.

When the inbound traffic is low, and some blend
agents are idle, an automatic dialer composes mul-
tiple outbound calls in parallel (trying to reach po-
tential customers, e.g., for marketing or direct sales),
in order to increase the productivity of the center.
Mismatches occur when more customers are reached
by outbound calls than the number of idle agents.
The outbound calls are served only by blend agents,
whereas inbound calls can be served by either type. See
Pichitlamken et al. (2003) for more details.

Traditionally, call center operation is often modelled
as a queueing system (see Koole and Mandelbaum 2002
and Gans, Koole, and Mandelbaum 2002 for extensive
surveys). Beside Markovian queueing models, stochas-

tic discrete-event simulation is also used because it is
highly flexible, i.e., a simulation model can be tai-
lored to specific details of call centers and is easy to
modify. The simulation model also allows an ana-
lyst to do a what-if analysis and learn additional in-
formation that may otherwise not be available, e.g.,
times that customers are willing to wait before hang-
ing up. The growing number of papers on call cen-
ter simulation at the Winter Simulation Conference
(http://www.wintersim.org) show that simulation is
becoming an important analytical tool for call center
management.

Among many issues in call center operation, we
consider the so-called staffing problem where the goal
is to determine the number of agents required in
each time period to achieve a certain level of ser-
vice quality. In our case, the quality of service
(QoS) is defined as the fraction of inbound calls an-
swered within 20 seconds or less. To our knowl-
edge, most works on the staffing problem consider
only inbound call centers with one type of agents,
whereas our call center handles both inbound and out-
bound calls, and there are inbound-only and blend
agents. Atlason, Epelman, and Henderson (2002) com-
bines an iterative cutting plane method with sim-
ulation. An integer program is solved to gener-
ate a staffing policy, which is then subsequently
evaluated via a simulation model to see if it pro-
vides a satisfactory service level. Related to
this idea are Mason, Ryan, and Panton (1998) and
Ingolfsson and Cabral (2002). All three papers con-
sider call centers with only inbound calls.

In this work, we apply GoLo (global optimization-
local optimization), an optimization-via-simulation
tool (Pichitlamken and Nelson 2003), to a call cen-
ter simulation model that we have developed in
Pichitlamken et al. (2003). We use the term “opti-
mization via simulation” to refer to the problem of
maximizing or minimizing the long-run average per-
formance measure of a computer simulation model,

http://www.wintersim.org
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i.e., a stochastic simulation output. Fu (2002) and
Swisher et al. (2004) provide comprehensive overview
of optimization-via-simulation research and practice.

GoLo consists of a global guidance system, a
selection-of-the-best procedure and local improve-
ment (see Section 3 for more details). Like most
optimization-via-simulation algorithms, GoLo consid-
ers a problem with a single (i.e., scalar) objective func-
tion. However, our call center is in a blend environment,
where there are multiple objective functions, namely, a
long-run quality of service requirement for inbound calls
which depends on the number of inbound agents avail-
able, and long-run average operational cost which is a
function of total number of agents employed and the
number of successful outbound calls.

To apply GoLo to our call center problem, we divide
the problem into two stages: First, we determine the
number of inbound agents needed to satisfy the QoS
requirement while having no blend agents. With this
number of inbound agents, we then find the number
of blend agents such that the average cost (labor cost
minus revenue from outbound calls) is minimized.

This paper is organized as follows: Section 2 briefly
discusses a call center simulation model under study.
Section 3 outlines GoLo. We present our numerical re-
sults in Section 4, and we conclude in Section 5.

2 CALL CENTER SIMULATION MODEL

To make this paper self-contained, we briefly de-
scribe our call center simulation model. See
Pichitlamken et al. (2003) for complete details.

Call center data are generally aggregated as aver-
ages over some time period (30 minutes in our case);
therefore, it is natural to assume that the model pa-
rameters (e.g., inbound arrival rates) are constant over
each half hour. A single simulation run consists of
some number of independent and identically distributed
(i.i.d.) “days,” each of which has six half hours. We
consider six half hours instead of 25 as we did in
Pichitlamken et al. (2003) so as to make a simulation
run not too long, for the purpose of experimentation.

We model the inbound call arrival process with a
Poisson distribution with a stochastic rate. Let Xi be
the number of inbound call arrivals in half hour i, with
the probability mass function:

Pr{Xi = x} = e−Λi
Λx

i

x!
, where Λi = Wλi (1)

(Avramidis, Deslauriers, and L’Ecuyer 2004). The λi’s
are constants, and W is a gamma random variable with
E[W ] = 1 and density

g(λ) =
β−α

Γ(α)
λα−1e−λ/β . (2)

The arrival process parameters (the number of arrivals
is per half hour) are: α = 29.7, β = 0.0336, λ1 = 31.5,
λ2 = 45.9, λ3 = 59.5, λ4 = 67.8, λ5 = 73.1, and λ6 =
72.6 per half hour.

The service times of inbound calls are modelled with
a gamma distribution (2) where α = 0.924, β = 608.9,
and the service times are in seconds. The service times
of outbound calls are modelled with exponential distri-
bution with mean 440.2 seconds, i.e., the service rate
µk = 1/440.2 sec−1, k = 1, 2, . . . , 6.

All inbound agents are identical, and so are blend
agents. There is a single FIFO waiting queue for in-
bound calls. An inbound customer who is not served
immediately hangs up with probability 0.005; other-
wise, he joins the queue from which he will abandon if
experiencing a waiting time greater than his patience
time. We model this patience time as an exponential
random variable with mean 5.0 seconds.

Our dialer model tries to emulate the real dialer in
that the decision on when and how many outbound
calls to make is based on the current state of the sys-
tem. When the service of a customer ends, if the num-
ber of idle blend agents is N2, the dialer makes out-
bound calls if N2 ≥ 1. The number of calls composed
is 2N2. Each outbound call successfully reaches a cus-
tomer with probability 0.25. The answering time for an
outbound call, defined as the time required by the di-
aler to either reach the customer or recognize that the
attempt is not successful, is exponentially distributed
with mean 2 seconds. Call center agents’ hourly wage,
2c, is 10, and revenue per one successful outbound call,
r, is 0.5.

3 SIMULATION-VIA-OPTIMIZATION AL-

GORITHM

The purpose of GoLo is to find a decision variable
(often called “solution”) x = [x1, x2, . . . , xq]

T that
maximizes/minimizes some performance measure µ(x)
where x is subjected to linear deterministic constraints,
and xi, i = 1, 2, . . . , q, is a non-negative integer. These
constraints define a feasible region, Θ. Because Θ is
finite and discrete, we can conceptually index the solu-
tions x as follows: Θ = {x1,x2, . . . ,xv}. The function
µ(x) is unknown but can be estimated via simulation.
The observed performance of xi on replication p of the
simulation is denoted by Yip, so that µi = E[Yip]. In
the context of a call center simulation model, a decision
variable x is a staffing policy which is a vector of size 12,
[x11, x21, x12, x22, . . . , x16, x26]

T , where x1k is the num-
ber of inbound agents and x2k is the number of blend
agents in half hour k, k = 1, 2, . . . , 6. A simulation out-
put Yip is either (a) the sum of discrepancies between
the simulated QoS and the target, or (b) the opera-
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tion cost, when the staffing policy xi is used on the pth

simulation run (see Equations (4) and (5) below).
GoLo consists of a global guidance system, a

selection-of-the-best procedure, and local improvement.
The global guidance system ensures the convergence of
the search so that, given sufficient time, it reaches and
selects one of the optimal solutions. Specifically, we
adopt the philosophy of Nested Partition (NP) method
(Shi and Ólafsson 2000). NP is based on identifying a
sequence of “most-promising” subregions of the feasi-
ble space. When better solutions are found inside the
current most-promising region, then the region is par-
titioned for finer exploration. On the other hand, when
better solutions are found outside the current most-
promising subregion, then NP backtracks to a superre-
gion of it. The idea is to concentrate the computational
effort where there appear to be good solutions but not
be trapped locally.

A hill-climbing (HC) algorithm constitutes our local-
improvement scheme. We chose HC because it is in-
tuitively simple: The current solution on hand is com-
pared with some (or all) of its neighboring solutions,
and the winner becomes the next solution. This neigh-
borhood selection of the best is repeated until some
stopping criterion is satisfied. Using HC or not is an
option in GoLo.

Each NP iteration, and each HC step, requires select-
ing the best solution from among a number of candi-
dates (the sampled solutions for NP, and the neighbor-
ing solutions of the current best for HC). Sequential Se-
lection with Memory (SSM) provides a highly efficient
method for selecting the best—maximum or minimum
expected performance—from among a small number
of candidate solutions while controlling the chance of
an incorrect selection (Pichitlamken and Nelson 2001).
SSM is specially designed for use in optimization algo-
rithms that revisit solutions because it exploits what-
ever data that have already been obtained. Under cer-
tain conditions, SSM guarantees to select the best, or
a near-best, solution with a user-specified probability,
where “near-best” means within a user-specified indif-
ference level, δ > 0.

SSM(REGION) is a modified SSM which intends to
save simulation effort by terminating SSM when all sur-
viving solutions belong to the same subregion. This
is useful in an NP step where all we need to do is to
identify the subregion that contains the best sampled
solution, not necessarily the best solution itself.

3.1 GoLo Procedure

We give a high-level description of GoLo below (see
Pichitlamken and Nelson (2003) for complete details).

1. Initialization: Set the iteration counter k = 1, the

current most-promising region Rk to the feasible
region Θ, the number of observations on the ith

solution ni(k) = 0 for all i ∈ {1, 2, . . . , v}, and the
initial estimate of the optimal solution xî∗

k−1

to a

user-provided initial solution.

2. Search and selection: Repeat Steps 2a–2f until the
simulation effort (i.e., clock time or the number of
simulation replications allowed) is exhausted:

(a) Partitioning: If the current most-promising
region Rk is not a singleton, then partition Rk

into disjoint regions Rk1, Rk2, . . . , Rkω(Rk).
Let Mk = ω be the number of subregions.
Then, if Rk 6= Θ, aggregate the surrounding
region; let Mk = Mk +1 and RkMk

= Θ \Rk.

(b) Sampling: For each region Rk`, ` =
1, 2, . . . ,Mk, randomly sample ϑ solutions
from Rk`. (If xî∗

k−1

∈ Rk`, include it as one

of these ϑ sampled solutions from Rk`.) Ag-
gregate all the sampled solutions xi into a set
through their indices i; let Sk denote the set
of indices of sampled solutions.

(c) Selection of the best solution: Take ∆nfree ob-
servations of Yip from every solution xi, i ∈
Sk. Use SSM or SSM(REGION) to select the
best solution over Sk, which we denote as
x̂
∗(Sk). If the simulation effort is exhausted,

go to the Search termination step.

(d) Algorithm Hill Climbing : If the criterion for
using HC is satisfied, perform Algorithm Hill
Climbing with x̂

∗(Sk) as a starting solution.
Let xî∗

k

be the solution deemed best by HC.

If the simulation effort is exhausted, go to the
Search termination step.

(e) Updating the most-promising region: If xî∗
k

∈

Rk, then its subregion Rk` that contains
xî∗

k

becomes the new most-promising region,

Rk+1; otherwise, the search backtracks to the
superregion of Rk, which can be either Θ or
Rk−1. Increment k = k + 1.

(f) Restarting: Restart at iteration k if
Rk−k0+1 = Rk−k0+2 = · · · = Rk by letting
Rk = Θ; change the partitioning criterion.

3. Search termination: The best solution selected by
GoLo is the one with the minimum cumulative
sample average (if it is in a minimization context);
i.e., the selected solution is xî∗ where

Ȳi(r) ≡
r

∑

p=1

Yip/r

î∗ ≡ arg min
1≤i≤v

{

Ȳi(ni(k)) : ni(k) > 0
}

.(3)
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3.2 APPLYING GOLO TO A CALL CENTER

SIMULATION MODEL

Because GoLo considers a problem with a single ob-
jective function, but our staffing problem has two, we
divide the staffing problem for our call center simulation
model into two stages:

1. Assuming that the call center is in inbound mode,
determine the number of inbound agents needed to
“almost” satisfy the target QoS (QoS∗). Let Qk(x)
be QoS of half hour k when a staffing policy x is
employed. We want to find

x
′ = [x′

11, 0, x′
12, 0, . . . , x′

16, 0]T

= arg min
x

{

6
∑

k=1

∣

∣E [Qk(x)] − QoS′
∣

∣

}

(4)

for some QoS′ ≤ QoS∗. We consider the follow-
ing range of x′

1k: bλk/µkc ≤ x′
1k ≤ 2bλk/µkc,∀k,

where bac is a rounded down to the next largest
integer, and λk and µk are the arrival rate and
service rate of half hour k (see Section 2).

2. Let N(x) be the number of successful outbound
calls in a day when a staffing policy x is em-
ployed. With x′

1k, k = 1, 2, . . . , 6, from (4), de-
termine x2k, k = 1, 2, . . . , 6, such that

x = [x′
11, x21, x

′
12, x22, . . . , x

′
16, x26]

T

= arg min
x

[

c
6

∑

k=1

(x′
1k + x2k) − rE [N(x)]

]

,(5)

where c is an agent’s wage for half an hour and r is
the revenue per one successful outbound call. To
limit the scope of the search, we limit the range
of x2k to d0.5x′

1ke ≤ x2k ≤ x′
1k,∀k, where dae is a

rounded up to the next smallest integer, and x′
1k

is determined from (4) above.

4 NUMERICAL EXPERIMENTS

In this section, we consider some issues affecting the
performance of GoLo and how it performs relative to
other optimization schemes on our call center staffing
problem which is described in Section 2.

4.1 EXPERIMENTAL SETUP

We will first describe the competing optimization
schemes:

NP. NP is our version of the algorithm, but not using
SSM or HC. The algorithm takes ∆nfixed observations

Yip from xi on the first visit, and ∆nfree additional ob-
servations on all other visits. NP selects the best solu-
tion over the set Sk, x̂

∗(Sk), as the one with the largest
cumulative sample average, and it uses x̂

∗(Sk) to deter-
mine the new most-promising region.
Random Search (RS) (Andradóttir 1999) RS is a mod-
ified hill-climbing algorithm. Let Ik ∈ {1, 2, . . . , v} de-
note the index of the current solution on iteration k.
RS proceeds as follows:

1. Initialization: Set k = 0, Ik to the index of a user-
provided solution, x0 (If not given, randomly sam-
ple a solution from Θ).

2. Search: Repeat Steps 2a–2c until the simulation
effort is exhausted:

(a) Uniformly sample a candidate solution xI′

k

over Θ \ {Ik}, the entire feasible region ex-
cept for solution I ′k.

(b) Take ∆nfixed > 0 observations of YIkp

and YI′

k
p, and compute the sample averages

over these observations: ȲI′

k

(∆nfixed) and

ȲIk
(∆nfixed).

(c) Update Ik and Ci(k):

Ik+1 =

{

I ′

k, if ȲI′

k

(∆nfixed) < ȲIk
(∆nfixed)

Ik, otherwise

k = k + 1.

3. Estimating the optimal solution: The selected so-
lution is xî∗ from (3).

In the experiment, we use SSM(REGION) without do-
ing a hill-climbing search. The fictitious target QoS
(QoS′) in (4) is 0.67, while the actual target QoS∗ is
0.8. In the backtracking step, the superregion of Rk is
Rk−1. For the partitioning step, the number of subre-
gions partitioned per Rk (ω) is 2. The number of it-
erations without progress that triggers restart (k0) is
6. The minimum number of observations taken from
a sampled solution (∆nfree) is 1. The number of ob-
servations for NP (∆nfixed) is 4. The indifference-zone
parameter for SSM (δ) for problem (4) is 0.5. The first-
stage number of observations for SSM (n0) is 4. The
confidence level for SSM (1 − α) is 0.9.

Because the real performance µ(x) is unknown, we
estimate it from a very long simulation run (1600 call
center days). Each algorithm (GoLo, NP and RS) is
given the same computational budget (number of ob-
servations). We then repeat the entire optimization run
m∗ times. On the mth run, 1 ≤ m ≤ m∗, we have an es-
timate of the optimal solution xî∗(m) from (3) which has
corresponding true performance measure µî∗(m). The
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results that we present below are the averaged values
across m∗ optimization runs, specifically,

µ̄î∗(m
∗) =

1

m∗

m∗

∑

m=1

µî∗(m). (6)

We compare the performance of the selection-of-the-
best selection methods by observing µ̄î∗(m

∗).

4.2 EXPERIMENTAL RESULTS

In all the cases we have experimented, the averaged QoS
exceeds the required QoS, QoS∗, because of (4).

First, we consider some factors that affect the per-
formance of GoLo. GoLo uses SSM, a sequential proce-
dure, to do a local selection of the best. SSM needs an
indifference-zone parameter, δ, which specifies a practi-
cal difference a user deems worth noticing. Within the
context of GoLo, if δ is too small (i.e., a user is very de-
manding in differentiating solutions), GoLo will spend
a lot of simulation effort in doing each local selection of
the best (i.e., Step 2c in Section 3); as a result, GoLo
does not have much time to explore the feasible space.
On the other hand, if δ is too large, it implies that a
user does not care much about distinguishing between
solutions; in other words, it will be as if SSM is not
there at all. Table 1 shows that the performance of
GoLo depends on the size of δ, and it seems that too
large or too small δ harms GoLo’s performance (refer-
ring to (5), smaller is better for this staffing problem
problem). In Table 1, one simulation run consists of 5
call center days, and each optimization run has a quota
of 10000 simulation replications.

Table 1: GoLo Performance at Different Indifferent-
Zone Parameters δ, m∗ = 30, and Steady-State Ex-
pected Daily Cost µ̄î∗(m

∗) is Defined in (6).

δ µ̄î∗(m
∗) Standard Error

1 231.17 1.83
3 215.20 1.81
5 209.36 1.17
10 206.30 1.11
15 206.68 1.01
20 207.32 0.92

Now we consider some conditions in which GoLo per-
forms well compared to other algorithms. We find that
the amount of variability plays an important role. Re-
call that our single simulation run consists of some num-
ber of i.i.d. call center days, say NbDays. The higher
the NbDays, the less variability in simulation outputs.
In Pichitlamken and Nelson (2003), we find that GoLo
generally outperforms both NP and RS for problems
with high variability, and Table 2 shows that this find-
ing also holds for our call center problem. When NbDays

is 5, GoLo outperforms NP and RS, but when NbDays

is higher, NP outperforms others.
We now consider the relative performance of GoLo,

NP and RS as simulation effort (i.e., number of simula-
tion runs allowed) increases. From Table 3, we see that
RS underperforms either GoLo or NP at all simulation
efforts. When the simulation effort is small, it is not
clear if GoLo outperforms NP or not, but as the simu-
lation effort increases, GoLo clearly outperforms NP.

5 FUTURE WORKS

From the numerical experiment, we see that GoLo can
be used to solve the staffing problem for a call center
in a blend environment although the way in which we
use GoLo is rather ad-hoc. A better problem formu-
lation than (4) and (5) would be to have an inbound
QoS requirement (4) as a probabilistic constraint with
the objective of determining a staffing policy that min-
imizes some operational cost. Stochastic programming
(see, for example, Birge and Louveaux 1997) considers
an optimization problem with probabilistic constraints.
We want to adapt GoLo to include such requirements.
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