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ABSTRACT 

This paper presents a new approach to parallel computing 
for the routing simulation of packet switched network.  The 
simulation is based on AntNet.  We studied the AntNet 
adaptive learning technique and redesign its communica-
tion methodology.  The distributed simulation techniques, 
called asynchronous parallel discrete event simulation 
(PDES) is also presented.  PDES is used for exchanging  
the routing and the data packets between nodes.  To show 
the overall performance of the simulation, the network 
throughput and the average delay time are measured.  The 
experiments on our parallel algorithm were performed on a 
network of Commercial-off-the-shelf (COTS) worksta-
tions, which is a cost-effective solution for parallel model-
ing.  Our parallel model is geared toward practical applica-
tions for telecommunication industries. 

1 INTRODUCTION 

In today’s technology, wireless communication network 
has gained popularity. Not only the technology of network 
switching and transmission are widely developed, but also 
the routing algorithms rapidly evolve to support the new 
network service demands. 
 The routing scheme in the communication network 
can be described as follows:  Routing services start when a 
router receives data packets from a source node.  A routing 
table stored at the router is then used to determine a com-
munication path toward the destination.  Subsequently, the 
data packets can be forwarded along the selected path.  
This process will be repeated until data packets reach the 
destination.  From the previous literatures, the routing pro-
tocols can be categorized into, Distance Vector and Link 
State Protocol [Halabi, 1997]. The Distance Vector proto-
col exchanges the distance information (hop counts) be-
tween routers to search for the shortest path, while the Link 
State Protocol uses the status and bandwidth information.  
 The wireless network is a dynamic network topology, 
where traffic information changes consistently.  Thus, tra-

ditional routing protocol, which is centralized in nature, is 
not suitable due to the scalability problem.  The centralized 
model usually generates a lot of information packets caus-
ing a large amount of message passing between routers.  
Path establishment will consume a lot of time in updating 
the routing table and thus, affect the convergent time.  If 
the routing information is updated too frequently, informa-
tion used by the routers maybe outdated. The selected 
routes may then include congested or down paths.     
 The traditional routing protocols require the entire 
network routing information for path selection process.  
The protocols force a lot of overheads on updating these 
information when the network system changes frequently 
or increases abruptly in sizes.  Moreover, the centralized 
nature creates the bottleneck problem.   To overcome the 
drawbacks presented, adaptive and distributive routing al-
gorithms are proposed.  One of the technique is based on 
Ant Colony Optimization (ACO) algorithm [Dorigo and Di 
Caro, 1999].  The ACO algorithm employed the nature of 
swarm intelligence, which is a distributive multi-agent sys-
tem. The swarm intelligence such as ant or honey bee can 
adapt their behaviors smoothly in corresponding to the en-
vironment where they live.  In other words, they use envi-
ronment factor that each individual encounters to deter-
mine a global solution.  Applying the distributive routing 
scheme, we can avoid the problems presented previously 
and the overall performance will be improved.  The traffic 
of a dynamic wireless network, can thus be controlled.  In 
this work, we studied the Antnet system and designed a  
parallel discrete event simulation based on it.     

2 RELATED RESEARCH 

In recent literatures, the swarm intelligence based tech-
niques are studied and implemented with many problems 
such as optimization and routing in telecommunication. Its 
main characteristic is to use interaction between simple 
agents and their environments to generate global solutions. 

In Ant Colony Optimization technique, an artificial ant 
represents each agent. The main task of ants is collabora-
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tively finding the minimum cost path on a graph using 
pheromone trails as a communication medium.  Each ant 
uses probabilistic values, which are a function of phero-
mone and heuristic information (distance), to determine the 
next move.   An ant will deposit a pheromone on its se-
lected path that links the present and the next node.  Any 
path with a high concentration of pheromone will be a pre-
ferred path for the ants that follow. Consequently, the 
shortest path will be generated.  

The ACO algorithm is proposed for solving hard com-
binational optimization problems (NP-problem).  It is suit-
able for the static problems (environment factors are sta-
tionary), such as the traveling salesman (Ant System (AS) 
[Dorigo, Maniezzo and Colorni, 1996]).  Moreover, The 
algorithm is often used with the adaptive environment 
problem, such as the routing problem in telecommunica-
tion network, and Quality of services (QOS) on multimedia 
communication.  

In previous literatures, the ACO algorithm, due to its 
distributive nature, is known to be used for network rout-
ing.  For example, an adaptive ACO used for analyzing the 
routing structure of the British Synchronous Digital Hier-
archy (SDH) network.  The system is called Ant-Based 
Control (ABC) [Schoonderwoerd, Holland, Bruten and 
Rothkrantz, 1996.].  The ants in ABC move in only one di-
rection and update the routing table at each passing node. 
The ants die when they reach the destination node.  

Similar to ABC, the Antnet [Di Caro and Dorigo, 
1998] system was adapted from ACO.  However, the sys-
tem takes into account the fact that the shortest path is not 
always optimum.  Antnet includes traffic congestion in the 
routing scheme to ensure optimality making it appropriate 
for dynamic routing of the wireless technology. 

The ACO-based algorithms are mostly compute inten-
sive.  In order to improve the performance, parallel tech-
niques were explored.  The goal is to reduce the computa-
tional workload on each computer by involving a cluster of 
computers.  The first parallel version of adaptive ACO was 
applying to the traveling salesman problem on the Connec-
tion Machine CM-2 as presented in [Bolondi and Bon-
danza, 1993].  The parallelism was employed at the ant 
level.  The work by Bullnheimer [Bullnheimer, Kotsis and 
Strauss, 1998] further increased the parallel performance 
by extending the parallelism to the sub-colony level.  The 
works by Bullnheimer and Stützle [1998] compared the 
performance and efficiency of the synchronous versus the 
asynchronous parallel implementation [Antony, Piriyaku-
mar, Louis and Levi, 2002]. The result showed that the 
asynchronous system yielded a better communication cost. 

In our research, we chose to base our work on the 
AntNet system, due to its performance merits.  A parallel 
simulation is designed.  We expect our version of parallel 
AntNet system to be scalable and practical for real-time 
simulations. 

3 ANTNET: THE SEQUENTIAL SIMULATION 

AntNet is an adaptive routing algorithm based on ACO.  
The algorithm searches for a minimum cost path under 
stigmergy paradigm using a set of multi-agents, called ants. 
The ants can move forward and backward.  Forward ants  
explore the traveling route and record the information 
about selected node and delay in the memory.  These in-
formation can then be used to update the routing table and 
the path statistics during the backward trip.  Each node is 
associated with 2 tables: a routing table, and a statistical 
local traffic table 
 

• A routing table records a relationship between 
nodes and their outgoing links.  Each record is a 
probabilistic value that refers to the goodness of 
the route selection.  The records are generated 
from the probability model in the routing policy.  
The total probability, Pnd of any n links being se-
lected on the route toward destination, d, is equal 
to 1. 

 

 ∑
=

Νk

1n
ndP  = 1 (1) 

  
 Where Nk is the neighbors of node k 

 
• The statistical local traffic table, M(µd,σ2

d,Wd), 
stores the mean (µd), the variance (σ2

d) and the 
observed best trip time (Wd) from a node to the 
destination, d. 

 
 The steps of Antnet adaptive routing can be described 
as follows:  
1. Initializing the probabilistic routing table and interval 

time for releasing forward ants in each node.  Choose a 
destination node randomly.  Then, launches forward 
ants from each source node. 

2. Each forward ant selects the neighboring node  with the 
highest probability of being joined to the destination as 
its next node.  Then the elapsed time needed for travel-
ing between the present node and the selected node is 
pushed into the ant’s memory stack. 

3. During a route selection, a forward ant checks for du-
plicated nodes to prevent traveling in circle.  If a cycle 
is detected, the ant will pop all the data from its stack 
and restarts routing.  If a cycle occurs after half-life of 
an ant, the ant will be destroyed. 

4. When a forward ant reaches a destination node, it will 
start to travel backward using the information in its 
stack in opposite direction. 

5. Each backward ant updates a record in a routing table 
at visited nodes using information in its stack. The 
means and the variance on visited node will also be up-
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dated using the trip time, tkd, from node k to destination 
d as shown in eq 2 and 3. 
 

 µd    =   µd + η( tkd – µd) (2) 
 σ2

d   =   σ2
d + η(( tkd – µd)2  – σ2

d) (3) 
 

 Where, η is the weighted factor which influences the 
number of effective samples, eff ≈ 5(1/η).   
 

The preferred path ranks, r, calculated from reinforce-
ment learning, also have an effect on the probability of 
the path being selected by a forward ant.  The relation-
ship is shown in equation 4.  
 

 Pfd   =   Pfd (1 – r) + r (4) 
 

The neighbors of selected node f is updated with equa-
tion 5.  
 

 Pnd  =   Pnd (1 – r),  n ≠ f  , n ∈ Nk (5) 
 
 The reinforcement learning,  r, can be defined as a 

function of the trip time and the local traffic as shown 
in equation 6. 

 
 r  =  c1(Wbest) +      c2(Isup – Iinf)   (6) 
     T          (Isup – Iinf) + (T – Iinf) 

 Wbest is the best trip time to destination d. Iinf and Isup is 
the lower and upper bound of the confidence interval. 
C1 and C2  are the weighting coefficients. 

4 ASYNCHRONOUS PARALLEL SIMULATION 
MODEL 

There are two types of packets; data and routing, randomly 
generated and transmitted during our version of AntNet 
simulation.  The routing packets are used in finding the op-
timum path, while the data packets are used to simulate the 
actual packets traveling within the network.  With the un-
predictable network traffic of both types of packets, our 
AntNet system is considered a distributive simulation.  
Thus, the sequential discrete event simulation model does 
not correspond well to its behavior.   A re-design of Ant-
Net based on asynchronous parallel discrete event simula-
tion (PDES) is appropriated.  In this section, we proposed a 
design of such model. 

4.1 Partitioning 

In a non-stationary routing problem, the problem size has a 
great effect on the system scalability.  In orther words, the 
execution time of the network simulation depends on the 
system workloads.   Thus, partitioning and distributing 
workloads are processes of significance in the concurrent 
version of AntNet.  Workload partitioning refers to the 

process of breaking down both the computation and simu-
lated data into pieces.  Task partitioning in our concurrent 
Antnet can be achieved in two domains: Functional and 
Data.  

4.1.1 Partitioning in functional domain 

The structure of an actual network composes of a set of 
routers.  These routers are responsible for switching and 
routing operations in packets exchanging.  In our simula-
tion model, the routers are represented by logical processes 
or LP.  In the network topology displayed in Figure 1, each 
node represents a LP and each link represents a communi-
cation path.  The LP routes messages and manages mes-
sage queue.  Message routing concerns with two functions: 
finding an optimal path between any source and destination 
pair (forward ants), and recording a goodness of route se-
lections in routing tables based on reinforcement learning 
(backward ants).   The queue managing function, on the 
other hand, deals with the arrival and the departure of both 
data and routing packets, which are controlled by the event 
clock.   In the distributed simulation, the LPs are mapped 
independently across a cluster of workstations as shown in 
Figure 1.  At any given time, each LP handles one of the 
specific tasks described previously.  The concurrency can, 
thus be achieved in the functional domain. 
 Moreover, the locality of references concept is applied 
to reduce the communication cost.  Neighboring nodes in 
the topology are mapped into the same physical processing 
unit as they tends to exchange messages (data and routing 
packets).  The single-link clustering method based on ag-
glomerative algorithm [Jain and Dubes, 1948] is used in 
our work to construct the network topology data structure.  
Communication overhead can thus be minimized.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Partitioning network topology to logical proc-
esses on multiprocessors architecture. 
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4.1.2 Partitioning in data domain  

The gloal routing table in the simulation model is repre-
sented  by a NxN matrix, where N is the number of nodes 
in the network topology.  To decompose the tasks in data 
domain, the concept of local routing is formed.  Logical 
processes are grouped together using the clustering tech-
nique and each group conducts its own local simulation.  
The global routing table can, then, be  divided into a set of 
local tables, where each table only keeps track of the LPs 
in the group as shown in Figure 2.  The local routing table 
is a matrix of size LxN, where L is the number of commu-
nication links of a node.  
 
 
 
 
 
 
 
 
 

 
Figure 2: Partitioning a routing table. 

4.2 Event synchronization with rollback 

In a distributed simulation environment, activities occur 
based on an event scheduling and a message passing 
mechanisms.  Logical processes (LPs) in the simulation 
can operate concurrently and independently.  The proper 
order of the simulation events is maintained by the syn-
chronization of message passing.  The header of each mes-
sage will be stamped with a scheduling time.  These time-
stamps will be used to manage simulation event sequence.  
In our parallel simulation model, the optimistic synchroni-
zation method is used.  The method does not enforce the 
waiting rules [Chandy and Misra, 1979], i.e. the LPs are 
allowed to process any message arrived at the node.   The 
causality error can, thus occur.  The optimistic method 
[Jefferson, 1985] then, tries to detect and recover from the 
error using a rollback mechanism.  If the time stamped on 
the arriving message is prior to the current time, the 
mechanism will rollback the simulation to the stamped 
time based on sequence information in a message queue. 
Note that, the queue is implemented under the M/M/1 
queuing model. 

4.3 Antnet: the parallel and distributive system 

 Communications between nodes in our parallel Ant-
Net simulation is based on a manager-worker paradigm. 
Initially, a manager constructs a global routing table, node 
identifiers, and a set of communicators for each worker.  
Then, it decomposes the tasks in both data and functional 

domains, and assigns a node identifier and local routing ta-
ble to the workers using the clustering technique.  During 
the simulation, the manager coordinates the operation by 
processing different types of messages.  Table 1 shows the 
key message types.   
 

Table 1:  Message Management 
Message type Manger Worker Description  
SETLINKQ Recv Send Link queue status 
GETLINKQ Recv and 

Send 
Send 
and 

Recv 

Link queue status 

SETTIME Recv Send Local current event 
time 

GETTIME Send Recv Minimum current 
event time 

FORWARDANT Recv and 
Send 

Send 
Recv 

Forward ant packet 

BACKWARDANT Recv and 
Send 

Send 
Recv 

Backward ant  
packet 

DATAPKT Recv and 
Send 

Send 
Recv 

Data packet 

  
 The SETLINKQ and GETLINKQ messages are used by 
the manager to keep track of workers’ traffic.  This infor-
mation is used by the worker in the next node selection 
process.  The manager manages the memory space used in 
the simulation via the SETTIME and the GETTIME mes-
sages.  These messages indicate the recent event time his-
tory of each worker and are used to determine the global 
time.  The routing and data packets in the simulation are 
forwarded in the network topology based on the informa-
tion in the FORWARDANT, BACKWARDANT and 
DATAPKT.  
 The workers are a group of logical proceses, who con-
duct the actual simulation by periodically generating a set 
of discrete events.  Each worker maintain a packet queue.  
In each event, a routing or a data packet is generated. 
These packets are transported by ants.  The routing packets 
are used to measure the utilization of all communication 
links in the topology, and  are carried by both forward and 
backward  ants during the reinforcement learning period.  
The throughput and the average delay of data packets indi-
cate a performance of the AntNet routing policy.  The 
workers’ task can be described in the following psudo-code 
fragment. 
 
worker() { 
1 {routing_table, traffic_table} = Initial-
ize(); 
2 while (!terminate){ 
3  if (ant = receive (any_worker)) 
4   addarrive (ant); 
5  send (manager, link_queue_status); 
6  if (at_scheduled_time) 
7   new_ant = create_ant (route_packet); 
8  ant = getevent (); 
9  if (ant == arrival)  
10   arrive (); 
   else { 
11   depart (); 

P11 P12 P13 P14 P15 --------------- P1N 
P21 P22 P23 P24 P25 --------------- P2N 
P31 P32 P33 P34 P35 --------------- P3N 
P41 P42 P43 P44 P45 --------------- P4N 
P51 P52 P53 P54 P55 --------------- P5N 
--------------------------------------- 
---------------------------------------- 
PN1 PN2 PN3 PN4 PN5 ------------  PNN 

P11 P12 P13 P14 P15 --------------- P1N 
P31 P32 P33 P34 P35 --------------- P3N 
P51 P52 P53 P54 P55 --------------- P5N

LT1 LT2 LT3 LT4 LT5 --------- LTN

} L

Global routing table Local routing table 

Local traffic statistics 
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12   if (!destination_node) {     
13    compute_trip_time (ant); 
14    q = request_link_queue (manager); 
15    next_node = select_neighbor (q); 
16    if (!detect_cycle (ant)); 
17     send (next_node, ant); 
    else 
18     destroy (ant); 
   } 
   else { 
19    backward_ant = ant 
20    send (prev_node, backward_ant); 
   } 
  } 
 } 
} 
 Each worker obtains a partial routing table from a 
manager and initializes a simulation object (line 1).  If an 
ant arrives from another worker, its timestamp will be 
checked with the function called, Addarrive (line 2 to 4).  
The worker then sends its link queue status to the manager 
(line 5), and generate a new ant according to the pre-
defined scheduled time (line 6 to 7).  The new ant carries 
the routing packet. The worker then selects the next event 
to be processed from both the arrival and the departure 
event lists (line 8).  
 If the selected event is equal to arrival, a new ant that 
carries the data packet is generated using a function called, 
Arrive (line 9 to 10).  Otherwise, the selected event/ant is 
departed from the node.  The actions are described in a 
function, called Depart (line 11).  After a departure ant is 
de-queued, it is driven by the routing mechanism.  The 
worker will check whether the current node is the ant’s 
destination.  If that is not the case, a trip time will be com-
puted and the next node will be selected from its neighbors 
based on the link queue status sent by a manager (line 12 to 
15).  A link queue status indicates traffic at the neighboring 
nodes by evaluating a number of packets/ants queued at 
each node.  The next node is the node with the least traffic. 
 Before an ant is sent to the next node, its memory will 
be searched for a circular path (line 16).  The ant will be 
forwarded if and only if a cycle is not detected. It will be 
destroyed, otherwise (line 17 to 18).   If the node is the 
ant’s destination, the ant will reverse its traveling direction 
and becomes a backward ant (line 19 to 20). The informa-
tion which is stored in a backward ant’s memory is used in 
reinforcement process.  Thus, a backward ant does not 
need to find the next node.  It can just use the information 
in its memory to trace backward toward the source. 
 Addarrive: manipulates the arrival ants from another 
worker in the simulation.  Addarrive uses a synchronous 
mechanism to handle an arrival ant with a timestamp 
smaller than some previously serviced messages.  If the 
timestamp breaks the increasing order, the roll-back 
mechanism is employed.  If needed, an anti-message (mes-
sage cancellation) will be sent to the required destinations. 
 Arrive: generates a new arrival ant.  The worker will 
check whether its status is busy or idle.  If the status is 
busy, an arrival ant will be kept at the end of the worker’s 

queue, where it awaits a service.  Otherwise, the worker’s 
status will be updated and the ant will be serviced.  
 Depart: generates a departure ant.  The worker’s 
queue is checked.  In a case of an empty queue, the worker 
status is changed to idle and a new departure ant is gener-
ated.  Otherwise, a current event at the front of the queue is 
used to generate a departure ant.  The delay time, which is 
a partial trip time used in a reinforcement process, is also 
calculated in the process. 

5 EXPERIMENTAL RESULTS 

In our experiments, we use the NFSNET or the National 
Science Foundation topology.  The NFSNET composes of 
14 nodes and the communication bandwidth are 1.5 Mbps. 
The propagation delay ranges from 4 to 20 msec.  The 
network topology is shown below. 

 
 
 
 
 
 

Figure 3: NSFNET topology 

 Other experimental data setting uses, the packets’ size 
of 4096 bits.  The forward ant is generated every 1 sec.  
The mean of packet inter-arrival time is  0.3 and the data 
packets are generated at the same rate for all nodes (uni-
form passion distribution).   
  The overall performance of the routing mechanism in 
a communication network is measured by the throughput 
and the average packet delay.  The throughput measures 
the quantitative services that the network is able to offer in 
a certain amount of time, while the packet delay defines 
the quality of service produced. 
 Figure 4 and 5 show the network performance of the 
parallel simulation running on a heterogeneous network of 
PCs.  From the result, notice that, the difference between 
1-, 2-, 3-, and 4-node environment are minimal indicating 
that our parallel AntNet generate the correct results. 
 Figure 6 shows the parallel scalability analysis.  From 
the plot, as more computers were added, the average proc-
essing time decreased rapidly.   Applying parallel comput-
ing model, we are able to achieve the convergent point  
(same throughput and average delay) much faster.   Our 
modified version of AntNet divided the simulation in both 
data and functional domains.  It is fast and efficient and, 
thus is appropriate for use in the network routing simula-
tion. 
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Figure 4: Throughput with MPIA 0.3 
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Figure 6: The Heterogeneous Scalability Plot 

6 CONCLUSION 

This research presents a parallel computing framework for 
the AntNet routing simulation.  We redesigned AntNet 
communication and synchronization methodology based 
on PDES.  To show the overall performance of the simula-
tion, the network throughput and the average delay time 
are measured on a network of Commercial-off-the-shelf 
(COTS) workstations.  Our experiments offer similar result 
to other AntNet system in terms of throughput and average 
delay.  However, the parallel algorithm can cut down proc-
essing time greatly.  From the results, the algorithm scale 

extremely well, and thus can be considered for use with 
real-time network simulation in the future. 
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