
Proceedings of the 2005 International Conference on Simulation and Modeling
V. Kachitvichyanukul, U. Purintrapiban, P. Utayopas, eds.

ABSTRACT

This paper addresses the problem of forming batches of
customer orders in a warehouse. The problem is modelled
as a constraint satisfaction problem in which the business
goal and operational requirements are presented as soft and
hard constraints respectively. A set of binary decision vari-
ables is used of whether to assign an order or not to each
potential batch. The very high number of possible order
combinations led us to use a heuristic method that can find
a good batch forming solution within a viable time. The
method also incorporates a self-learning mechanism. With
sufficient search history, the algorithm predicts and gener-
ates a good assignment of orders to batches. Computational
tests on randomly generated problems are conducted to
evaluate the proposed model and solution method.

1 INTRODUCTION

Grouping members or items into batches is a decision
problem occurred in business and industry, e.g. grouping
patients into hospital’s rooms or even a selection of food
for menu. The objective of batch forming problem is to
group items into batches such that items are formed with
maximum similarity.
 In warehouse operations, when customer orders con-
sist of few items, efficient order picking can be achieved
by forming (or grouping) orders into batches. When the
size of a warehouse and the number of customer orders are
large, a warehouse company encounters the problem in
finding an efficient order picking operation. The poor op-
eration incurs additional operating cost, i.e. wages paid to
order pickers and the maintenance cost for pick equipments
used.
 Typically, order picking process accounts for about
55% of warehouse operating cost (Frazelle, 1996). There-
fore, a decision support tool that provides an effective or-
der picking plan would bring substantial cost-savings. We
address the problem of forming batches in a grocery ware-

house in which thousand customer orders a day are ob-
tained. Each time when a warehouse receives customer
orders, order pickers retrieve items listed in the orders; af-
terwards, those items will be delivered to warehouse’s cus-
tomers.
 A basic concept for grouping customer orders into
batches exploits the similarity between orders and com-
bines them together. There is a cost paid for forming
batches if orders are combined with less similarity. In this
paper, a picker route is expressed in terms of aisle to trav-
erse by the pickers. The business goal is to assign orders
sequentially to batches of pick lists such that the picker
route interference is minimised; in other words, batches of
orders are formed with maximum similarity. A set of bi-
nary decision variables is used of whether to assign and or-
der or not to each potential batch. We introduce a binary
matrix of aisles to be traversed by all customer orders in
which a traversal routing policy is assumed, i.e. when en-
tering an aisle, an order picker completely traverses the
aisle, and U-turn is not allowed. Then, the mismatches of
aisles for the combinations of orders are used to evaluate
how well the orders are formed.
 The paper is organised as follows. Section 2 reviews
the existing methods for batch forming problem. Section 3
defines soft and hard constraints and models the problem
as a constraint satisfaction problem. Section 4 describes the
solution methods for the batch forming problem. Computa-
tional results are given in Section 5. Conclusions are fi-
nally, discussed in the last section.

2 LITERATURE REVIEW

The batch forming problem is the problem of assigning
customer orders into batches to enable efficient order pick-
ing and of finding batches of picking route for every batch.
There are several variants of this problem, depending on
the method to pick items listed in the orders, e.g. manual,
semi-automatic or automatic picking, the capacity of a pick
equipment, and the business goal of the problem.

FORMING BATCHES OF CUSTOMER ORDERS IN A WAREHOUSE

Nakorn Indra-Payoong

Transport and Logistics Optimisation Group
Maritime College

Burapha University
Chonburi, Thailand 20131

 Kasame Pinthong

Water Resources and Coastal Engineering Section
281 Sukhumvit 71

SEATEC Group, Co., Ltd.
Bangkok, Thailand 10110

Indra-Payoong and Pinthong

In general, the business goal can be categorised into two
groups: the distant of pickers traversed and the similarity
of orders in batch (Choe, 1991) . The first category aims to
minimise the total distance (or travel time) of pickers trav-
ersed in retrieving orders. The second tries to maximise the
similarity of orders in batch, in other words, to minimise
the total number of mismatches amongst customer orders.

An early attempt in forming batches of customer or-
ders in a warehouse was proposed by Elsayed and Stern
(1983), the objective of the problem is to minimise the to-
tal distance travelled by order pickers. They combined the
orders in terms of common item locations and minimum
distance between item locations. The heuristic method was
proposed to solve this problem. The heuristic composes of
three steps: seed selection, order congruence, and addition
of orders.

Elsayed and Unal (1989) proposed the order batching
algorithm for automated storage and retrieval (S/R) sys-
tems based on timesaving criterion of forming batches.
Several heuristics were used, i.e. EQUAL, SL, MAXSAV
and Cwright. They developed a travel time estimate proce-
dure to calculate the time saved in forming batches. Gibson
and Sharp (1992) developed the order batching heuristic
for a manual order picking warehouse. They assumed that
the location of the items in terms of aisle is known. To
form a batch, an order in the top of the list is chosen as a
seed order. Then, the orders are successively chosen in the
batch based on the sequential minimum distance of the or-
ders until the number of orders reaches the batch size limit.
 Elsayed et al. (1993) considered time window batching
problem in a warehouse. They proposed the heuristic for
batching of orders with due times. The business goal is to
minimise earliness and tardiness penalties. Gademann et al.
(2001) addressed the problem of batching order in a ware-
house. The objective is to minimise the minimum lead time
of any of the batches. They presented a branch-and-bound
algorithm to solve the problem of moderate size. The 2-opt
heuristic is used for providing tight upper bounds.
 Ruben and Jacobs (1999) compared the performance
of different order batching strategies. They demonstrated
that the turnover based assignment strategy reduces the dis-
tance traversed by order pickers in the warehouse, but in-
creases traffic in the aisle. Random assignment of items re-
sults an increase in travel time of the pickers, however it
does not cause the congestion. Family based assignment
strategy provides the best results by reducing the travel dis-
tance of the pickers and has the aisle traffic in control.
Sundaram and Centeno (2004) considered batch forming
problem in a warehouse. The objective is to form batches
of orders so that the commonality of aisles amongst the or-
ders that form the batch is maximised. The exhaustive and
partitioning methods were proposed to solve the problem.
Under the exhaustive method, all possible combinations of
orders for each batch are generated. After generating order
combinations, a ranking method is used to determine the

best combination. For the large size problem, the partition-
ing heuristic is used to obtain the good combination within
a little computational time.
 In this paper we consider the problem of forming
batches for customer orders in a warehouse in which thou-
sand customer orders a day are received. The objective is
to minimise the total number of mismatches amongst or-
ders in terms of aisle travelled by pickers. We present a
heuristic learning algorithm to find a good batch forming
solution for a practical order picking operation.

3 CONSTRAINT-BASED MODELLING

Real-world problems tend to have a large number of con-
straints, which may be hard or soft. Hard constraints re-
quire that any solutions will never violate the constraints.
Soft constraints are more flexible, constraint violation is
tolerated but attracts a penalty. Naturally, a real-world
problem can be thought of as a constraint satisfaction prob-
lem (CSP). There are two critical advantages of using con-
straint-based modelling. Firstly, it is a clean separation be-
tween problem modelling and solution technique. If new
problem conditions are introduced, we only need to model
such conditions as constraints. Secondly, problem-specific
knowledge can influence the search naturally. This is done
by applying problem-specific weights, reflecting their rela-
tive importance, directly to constraints in order to enhance
a solution algorithm within a CSP framework (Indra-
Payoong et al., 2003).

We consider the order batching for a warehouse with
parallel aisles which are connected by cross-aisles at the
front, (the middle), and the back of each aisle. Figure 1 il-
lustrates a typical parallel-aisle warehouse.

I/O station

aisle rack items

cross-aisle

cross-aisle

Figure 1: A typical parallel-aisle warehouse

A binary decision variables is used of whether to assign an
order or not to each potential batch. To simplify our dis-
cussion, the following notation will be used.

Indra-Payoong and Pinthong

Subscribes:
 i : batch, i = 1, 2, 3, …, M
 j : order, j = 1, 2, 3, …, N
 k : aisle, k = 1, 2, 3, …, L
Decision variable:
 ijx : 1, if batch i consists of order j , 0 otherwise
Parameters:
 ib : batch i
 B : Size of batch (number of orders)
 im : number of mismatches in batch i

In a CSP-model, optimisation criterion and operational re-
quirements are represented as soft and hard constraints re-
spectively. The criteria are handled by transforming them
into soft constraints. This is achieved by expressing each
criterion as an inequality against a tight bound on its opti-
mal value. As a result, such soft constraints are rarely satis-
fied.

A feasible solution for a CSP representation of the prob-
lem is an assignment to all decision variables in the model
that satisfies all hard constraints, whereas an optimal solu-
tion is a feasible solution with the minimum total soft con-
straint violation. For a constraint satisfaction problem, the
violation iν of constraint i is defined as follows:

 












−=⇒≤ ∑∑

j
ijijii

j
jij bxabxa ,0maxν (1)

where: ija are coefficients, ib is a tight bound and jx are
constrained variables. Note that violations for other types
of linear and non-linear constraints can be defined in an
analogous way.

When all variables are assigned a value, the violation of
the hard and soft constraints can be tested and quantified
for evaluating solutions.

3.1 Soft constraint

The total number of mismatches – the aim is to minimise
the total number of mismatches for all customer orders.
 In this paper, a picker route is expressed in terms of
aisle to traverse as a picker moves along aisle to pick items
from rack. We introduce a binary matrix of aisles to be
traversed by all customer orders in which a traversal rout-
ing policy is assumed, i.e. when entering an aisle, a order
picker completely traverses the aisle, and U-turn is not al-
lowed. The binary matrix is illustrated in Table 1.

Table 1: The binary matrix
Order/Aisle 1 2 3 4 5 6

1 1 1 1 0 1 0
2 0 1 1 1 0 1
3 1 0 1 1 1 1
4 0 1 0 1 0 1
5 1 0 0 1 1 0
6 0 0 1 1 1 1

In Table 1, suppose that order 1 and order 2 are formed
batch i (1ix , 2ix = 1), the number of mismatches of aisles
to be traversed by these orders (im) is equal to 4. That is,
in aisle 1, 4, 5, and 6, the item locations are different.
Therefore, the total number of mismatches constraint can
be defined as:

 ∑
=

=
M

i
im

1

0 (2)

3.2 Hard constraint

Batch size – this constraint ensures the orders must not ex-
ceed the batch size, which is defined as:

 ∑
=

∀≤
N

j
ij iBx

1

; (3)

4 SOLUTION METHOD

We propose a constraint-based local search (CLS) for solv-
ing the batch forming problem.

4.1 CLS

CLS is a heuristic method proposed by Indra-Payoong et al
(2004). The CLS can be considered as a general algo-
rithmic framework which can be applied to different opti-
misation problems with relatively few modifications to
make them adapted to specific conditions or problems.

 The CLS starts with an initial random assignment, in
which some hard constraints in the model can be violated.
In the iteration loop, the algorithm randomly selects a vio-
lated constraint. Having selected a violated constraint, the
algorithm randomly selects one variable in that constraint
and another variable, either from the violated constraint or
from the search space. Then, two flip trials are performed,
i.e. changing the current value of the variable to its com-
plementary binary value. Whenever all hard constraints are
satisfied, the algorithm stores the soft violation penalties as
feasible objective values, together with the associated vari-
able values. The algorithm continues until stopping crite-
rion is met, i.e. a feasible solution is found or if no im-

Indra-Payoong and Pinthong

provement has been achieved within a specified number of
iterations. The procedure of CLS is outlined in Figure 2.

 proc CLS
 input soft and hard constraints

 A := initial assignment
 while not stopping criterion do
 C := select-violated-hard-constraint ()A
 P := select-two-variables ()AC,

 h := total hard violation
 1A , 2A := flip ()PA,

 if ()21 hh < then ()1AA ←
 else ()2AA ←

 if h = 0 then A is feasible, record A
 end if
 end while
 output a feasible solution found
 end proc

Figure2: The CLS procedure

The procedure can be readily modified to give a set of fea-
sible solutions and to make more use of the soft con-
straints, which in the procedure of Figure 2 are ignored.

4.2 Variable selection

Once a violated constraint has been chosen, the algorithm
randomly selects two variables in order to perform trial
flips. For the batch forming problem, there is one set of bi-
nary variables, i.e. a variable ijx represents whether order
j is assigned to batch i or not. However, randomly

choosing one variable from the violated constraint and an-
other from the search space, the diversified exploration of
the solution space may not be achieved because the num-
ber of assigned orders to batches (ijx = 1) is significantly

less than the number of unassigned orders to batches (ijx =
0).
 It is also noted that a violated constraint indicates the
number of orders that exceeds the batch size, and CLS at-
tempts to get ride of one assigned order (ijx = 1) at each
time in order to reduce the number of orders in the violated
batch. However, when all batch size constraints are almost
satisfied, we may only need a small change to a current as-
signment so that CLS can move around a feasible order
combination more closely. Therefore, for the batch form-
ing problem, two alternative variable selection schemes are
introduced as follows:

Scheme 1: Randomly select two assigned orders in the
violated batch.

Scheme 2: Randomly select any two orders in the vio-
lated batch.

The CLS selects one of the schemes at random so that a
wide exploration of the solution space may be achieved.
The scheme 2 is used not only to allow CBS moving
around a feasible solution more closely but also to gain
computational advantage in a performance of the algo-
rithm.

4.3 Refined improvement

CLS has no feature that can move from a current feasible
solution to a better feasible solution. This deceases the per-
formance of CLS for the batch forming problem in which
there are so many feasible order combinations to batches,
and when a good bound strategy on an objective value
cannot be obtained. Therefore, a refined-improvement pro-
cedure is introduced to improve a feasible orders combina-
tion found by CLS. The main concept is to allow only fea-
sible improving solutions and to search more intensively
on a feasible region currently found. When CLS finds a
feasible combination, the refined-improvement procedure
is called. The procedure of the refined improvement is out-
lined as follows:

Step 1: Given a feasible combination found by CLS,
 record the total mismatches.
Step 2: Perform interchange assignment, i.e. assign order

to a new batch, and swap each remaining order in
the new batch to the current assigned batch until
all remaining orders in the new batch have been
considered. This is illustrated in Figure 3.

Batch/Order 1 2 3 4 5 N

1
2
3
4
M

Figure 3: The interchange assignment

Step 3: If any interchange assignment is feasible and a

new total mismatches is less than a current total
mismatches, replace a current total mismatches
with a new total mismatches; otherwise, undo in-
terchange assignment.

Step 4: Repeat from step 2 until all orders have been con-
sidered and continue the refined improvement
procedure until no improvement has been found.

Indra-Payoong and Pinthong

4.4 Learning method

The learning method learns from the search history and ex-
tracts the problem-specific knowledge implicitly (Indra-
payoong et al 2003). After a specified number of iterations,
the search history is analysed. The predictive choice model
(PCM) predicts good assignments of orders to batches.
These assignments will be hold for a number of iterations
in a probabilistic way, leading to good order combinations.

4.4.1 Violation history

Once a variable has been selected, the CLS has to choose a
value for it. The concept is to choose a good value for a
variable, e.g. the one that is likely to lead to a smaller total
hard constraint violation in a complete assignment. In CLS,
two variables are considered at each flip trial. The first
variable is randomly chosen from those appearing in a vio-
lated constraint and considered as the variable of interest,
the second variable is randomly selected, either from that
violated constraint or from the search space, and is to pro-
vide a basis for comparison with the variable of interest.

Clearly, the interdependency of the variables implies
that the effect of the variable value chosen for any particu-
lar variable in isolation is uncertain. Flipping the first vari-
able might result in a reduction in total hard constraint vio-
lation. However, it might be that flipping the second
variable would result in even more reduction in the viola-
tion. In this case, the flipped value of the first variable is
not accepted.
 Table 2 and 3 illustrate how the violation history is re-
corded and compared when the variable of interest in a cur-
rent assignment, ijx = 0 and ijx = 1 respectively. In these ta-

bles, h is the total constraint violation, *
ijx is the value

of ijx chosen in the flip trial. Note that only 1h , ′
1h , and *

ijx

are recorded for the violation history of ijx .

Table 2: Violation history, ijx = 0
Flip Var. of interest ijx Compared variable)(qxij

trial Current Flipped q Current Flipped *
ijx

 Val 1h Val ′
1h Val 2h Val ′

2h

1 0 33 1 15 5 1 33 0 26 1
2 0 18 1 15 9 0 18 1 9 0
3 0 9 1 4 12 0 9 1 14 1

N 0 75 1 32 4 1 75 0 39 1

In flip trial 1 the selected variables are ijx (current value 0)

and, separately,)5(ijx (current value 1). The current as-

signment has violation = 33. Flipping ijx , with)5(ijx fixed

at 1, gives violation = 15; flipping)5(ijx , with ijx fixed at
0, gives violation = 26. Therefore, in this trial the CLS re-
cords ijx = 1 as the better value. At some later iteration

CLS chooses to flip ijx again, this time (flip trial 2) with

compared variable)9(ijx . Flipping ijx , with)9(ijx fixed at

0, gives violation = 15; flipping)9(ijx , with ijx fixed at 0

gives violation = 9. Even though flipping ijx to 1 gives a
better violation than the current assignment, in this flip trial
the algorithm records ijx = 0 as the better value as there is

an assignment with ijx = 0 which gives an even better viola-
tion. If we view the results of these flip trials as a random
sample of the set of all assignments, the probabilistic
model could be used to capture the behaviourial inconsis-
tency in choice selection and to predict what would be a
good value for ijx . The collection method of violation his-
tory in Table 3 can be explained in an analogous way.

Table 3: Violation history, ijx = 1
Flip Var. of interest ijx Compared variable)(qxij

trial Current Flipped q Current Flipped *
ijx

 Val 1h Val ′
1h Val 2h Val ′

2h

1 0 33 1 15 5 1 33 0 26 1
2 0 18 1 15 9 0 18 1 9 0
3 0 9 1 4 12 0 9 1 14 1

N 0 75 1 32 4 1 75 0 39 1

4.4.2 Variable fixing

After a specified number of iterations, the trial history is
analysed. Some variables may have high probability of a
particular value given by the PCM. These variables will be
fixed at their predicted value for a number of iterations de-
termined by the magnitude of the probability. The search
space would be intensified and the algorithm targets for an
optimal solution. The ijx may hold a current value 0 or 1
and its predicted value can either be 0 or 1 during the
search. We categorise the fixing procedure into two
groups: local fix and global fix.

Local fix. The local fix is a process of preventing the CLS
assigning order to batch that may not lead to an optimal so-
lution, i.e. fixing ijx = 0 for the number of iterations.
Global fix. The global fix provides a strong propagation of
consistency within each order for the potential number of
batches. When the global fix is called (i.e. a predicted
value of ijx = 1), one order is exactly assigned to a batch,

Indra-Payoong and Pinthong

thereby it prevents the algorithm selecting the remaining
potential batches for that order.

5 COMPUTATIONAL RESULTS

The batch forming model was tested on randomly gener-
ated problem data from small to very large sizes. All test
cases were run on a typical personal computer. Each test
case is run ten times using different random number seeds
at the beginning of each run. If no improvement has been
achieved within 1500 iterations, the CLS will terminate.
The results are summarised in Table 4 . In this table, orders
are either be formed in each interval time or each delivery
day, maxΦ denotes the highest value of the first feasible
solutions, and Φ denotes the mean of the best feasible so-
lutions.

Table 4: Computational results
Test Aisles Orders maxΦ Solutions Reductions Time

case Φ Batches (%) (min)
1 6 10 20 8 5 60 0.00
2 10 20 64 40 5 38 0.01
3 10 50 193 151 5 22 0.05
4 15 100 579 491 10 15 0.21
5 15 250 1345 1069 25 21 3.65
6 20 500 3604 2918 50 19 9.04
7 30 1000 7401 6288 100 15 17.30

The results indicate that CLS is a promising approach for
the batch forming problem. We are able to obtain solutions
of a good quality in a reasonable run-time.
 Figure 4 illustrates the improvement of the solution
from aspects of the total number of mismatches versus the
number of iterations for test case 4. It shows that as search
proceeds CLS tends to roam progressively further from the
best current solution and focuses intensively on good solu-
tion regions previously found. Although the actual values
may differ amongst various cases, the characteristic shapes
of the curves are similar.

480

500

520

540

560

580

0 100 200 300 400 500
Iter.

To
ta

l m
is

m
at

ch
es

Current

Best

Figure 4: The solution improvement of CLS

6 CONCLUSIONS

This paper considers the difficult optimisation problem of
forming batches of customer orders in a warehouse. The
problem is modelled as a constraint satisfaction problem
and the total number of mismatches amongst orders in
terms of aisles traversed by pickers is used to evaluated
how well the orders are formed. This quantified measure
can readily be applied to a wide range of the problem con-
ditions in which the size of a warehouse or the layout of
aisles may vary.
 The proposed solution framework is simple and con-
venient to use. It requires a little effort in designing the al-
gorithm to solve the problem or to fit new problem condi-
tions. This is particularly true for the batch forming
problem in which the problem-specific knowledge cannot
be obtained easily; as a result, traditional heuristic methods
are less attractive as an algorithm designer faces the prob-
lem in finding a good short-cut to a good or optimal solu-
tion. The computational results have demonstrated the effi-
ciency and the robustness of the proposed method for the
batch forming problem.

REFERENCES

Choe, K.I. 1991. Aisle-based order pick systems with
batching, zoning and sorting. PhD thesis, Georia In-
stitue of Technology, GA.

Elsayed, E.A. and M.K. Lee, S. Kim. and E. Scherer. 1993.
Sequencing and batching procedures for minimizing
earliness and tardiness penalty of order retrievals. In-
ternational Journal of Production Research 31(3):
272-738.

Elsayed, E.A. and O.I. Unal. 1989. Order batching algo-
rithms and travel time estimation for automated stor-
age/retrieval systems. International Journal of Pro-
duction Research 27 (7): 1097-1114.

Elsayed, E.A. and R.G. Stern. 1983. Computerized algo-
rithms for order processing in automated warehouse
systems. International Journal of Production Re-
search 21 (4): 579-586.

Frazelle, E.H. 1996. World class warehousing. Logistics
Resources International, Atlanta, GA.

Gibson, D.R. and G.P. Sharp. 1992. Order batching proce-
dures. European Journal of Operational Research 58
(1): 57-67.

Indra-Payoong, N., R.S.K. Kwan, and L.G. Proll. 2003. A
randomised algorithm with prediction. (Invited talk at)
Scheduling Workshop on Application of Constraint
Programming, 9-10 September, University of Hud-
dersfield.

Indra-Payoong, N., R.S.K. Kwan, and L.G. Proll. 2004.
Rail container service planning: a constraint-based ap-
proach. (To appear in) Journal of Scheduling.

Indra-Payoong and Pinthong

Ruben, R.A. and F.R. Jacobs. 1999. Batch construction

heuristics and storage assignment strategies for
wall/ride and pick systems. Management Science 45
(4): 577-596.

Sundaram R. and M.A. Centeno. 2004. Forming batches:
exhaustive vs. partitioning methods. In Proceedings of
the 2nd World Conference on POM, Cancun, Mexico.

Gademann, A.J.R.M., J.P. Van Den Berg. and H.H. Van
Der Hoff. 2001. An order batching algorithm for wave
picking in a parallel-aisle warehouse. IIE Transactions
33: 385-398.

AUTHOR BIOGRAPHIES

NAKORN INDRA-PAYOONG is a Lecturer in the Mari-
time College, Burapha University. His research interests
include quantitative and optimisation techniques for pro-
viding competitive advantages in business with particular
emphasis on shipping, freight transport and logistics. His
email address is <nakorn@buu.ac.th>.

KASAME PINTHONG is a senior engineer of SEATEC
Group, Co., Ltd.. He received his M.Eng in Water Re-
sources Engineering from King Mongkut University of
Thonburi, Thailand. His interests include advanced algo-
rithms, simulation and modelling techniques with focus on
practical applications in water resources and coastal man-
agement. His email address is <kasemai@hotmail.com>.

	Back to Table of Content

