Proceedings of the 2005 International Conference on Stioanland Modeling
V. Kachitvichyanukul, U. Purintrapiban, P. Utayopass.

MODELING THE OPERATION ALLOCATION AND MATERIAL HAND  LING SYSTEM SELECTION
IN FMS DESIGN: A GENETIC ALGORITHM-BASED APPROACH

Sienny Sujono R.S. Lashkari
Department of Industrial & Manufacturing Department of Industrial & Manufacturing
Systems Engineering Systems Engineering
University of Windsor University of Windsor
Windsor, ON N9B 3P4, CANADA Windsor, ON N9B 3P4, CANADA
ABSTRACT this planning decision is related to the material handling

operations in the FMS in as much as the requirements of
This paper considers the problem of simultaneously deter part movement must be expressly addressed.
mining the operation allocation and material handling sys- Material handling (MH) accounts for 30-75% of the
tem selection in an FMS environment with multiple per- total cost of a product, and an efficient material handling
formance objectives. A multi-objective 0-1 integer system (MHS) can potentially reduce the manufacturing
programming model is developed which selects the ma- operation costs by 15-30% (Sule, 1994). These figures un-
chines, assigns the operations of the part types to the sederscore the importance of MH costs as an element in im-
lected machines, and assigns the material handling equip-proving the cost structure of manufacturing operations.
ment to transport the parts, as well as to handle the part at The determination of an MH system involves both the se-
given machine. The first objective function minimizes the lection of suitable MH equipment and the assignment of
total costs of the manufacturing operations, material han- MH operations to each individual piece of equipment.
dling operations, and machine setups; the second objectiveHence, material handling system selection (MHSS) can be
function maximizes the part-equipment “compatibility.” defined as the selection of MH equipment capable of per-
The “compatibility” is a measure which is computed as a forming the required MH operations within the constsaint
function of the capabilities of the equipment, and the tech- operating on the manufacturing system.
nological characteristics of the parts. A genetic algorithm- Given the significance of material handling in FMS,
based solution approach is presented and the solution re-an inadequately designed MHS may indeed interfere se-
sults are discussed. Some computational aspects of theverely with the overall performance of the system and lead
model, which pertain to the design of the genetic algo- to substantial losses in productivity and operational effi-

rithm, are also discussed. ciency, and to longer lead times. Thus, to avoid such pit-
falls, MHS design has to be integrated into the overall de-
1 INTRODUCTION sign of the manufacturing system.

The paper is organized as follows. Section 2 presents a
The key issue in manufacturing operations is how to pro- brief review of the related literature. In Section 3, the
duce high quality products at low costs to satisfy austo mathematical model is presented. In section 4 a genetic al-
demands in the shortest time possible. Flexible manufac- gorithm-based solution procedure is proposed, a numerical
turing systems (FMS) are acclaimed for their ability to example is given to demonstrate the application of the
produce a diverse range of parts efficiently, and for their model, and the computational results are discussed. Fi-
capability to respond quickly to changes in demand and re nally, some observations and conclusions are summarized
sources (Gupta and Goyal, 1989). Therefore, the develop-in section 5.
ment of FMS is considered one of the most important de-
velopments in industrial automation in recent times.

Operation allocation (OA) in FMS refers to the as- 2 RELATED WORKS

signment of operations of the part types to the machines
according to the operation sequences prescribed by theThis section contains a brief review of the recent literature
process plans for each part type, and subject to constraintspertaining to genetic algorithm-based approaches to opera-
operating on the system. Considering the integrating func- tion allocation and material handling system selection
tion of material handling within manufacturing operations, problem.
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Joineset al (1996) used a genetic algorithm to solve the problem of determining cyclic schedules for a material
an integer programming model of the design of a cellular handling hoist in the printed-circuit-board (PCB) electro-
manufacturing system. The formulation is a unique repre- plating line by using a genetic algorithm-based approach.
sentation scheme since it reduces the size of the cell forma-The objective was to determine an optimal simple-cycle
tion problem and increases the scale of the problem thatschedule of the hoist which maximizes the line throughput
can be solved. This approach also improves the designrate.
flexibility by allowing a variety of evaluations of furchs Sinriech and Samakh (1999) developed a genetic algo-
to be employed and by incorporating design constraints rithm approach for the pickup/delivery station location
during formation. Gravett al (1998) presented a genetic  problem in MH systems that have a segmented flow topol-
approach to find efficient solutions to the problem ofrfo ogy (SFT), considering the intradepartmental flowshia t
ing manufacturing cells for products having multiple rout- problem formulation.
ings. The method seeks to generate an efficient set of solu-  Aiello et al (2002) proposed an integrated approach to
tions which the decision maker may choose by evaluating the facilities and MH system design, and used a genetic al-
the consequences for each of the objectives. gorithm approach to find the solution which minimizes th

Sinriech and Meir (1998) suggested a genetic algo- MH cost.
rithm solution approach to solve the process selection and Pauloet al. (2002) presented a new framework for the
part cell assignment problem. The study assumed a produc-oint consideration of the operation allocation and the ma-
tion environment where each part has several processterial handling system selection problems. Two 0-1 integer
plans, each manifested by a required set of tools. A mixed programming models were proposed, one for OA, and the
integer linear program was developed to minimize the pro- second for MHSS, and solved sequentially. Lashégal.
duction cost. Morad and Zalzala (1999) proposed a genetic (2004) extended the work of Pawdbal. (2002) by devel-
algorithm to solve the integrated process planning and oping modified 0-1 integer programming models that were
scheduling problem as a multi-objective weighted-sum op- solved iteratively to obtain Bcally optimalsolution. The
timization model intended to minimize makespan, the total current work extends and modifies the previous works by
rejects produced and the total cost of production. Kumar  Pauloet al. (2002) and Lashkagt al. (2004), by integrat-
and Shanker (2000) used genetic algorithm to solve aing the OA and MHSS models into a unified model in an
mixed integer programming model of part type selection attempt to generate an overall optimal solution.
and machine loading problems in the production planning
of flexible manufacturing systems. Tiwari and Vidyarthi 3 MATHEMATICAL MODEL
(2000) developed a genetic algorithm-based heuristic to
solve the machine loading problem of a random type FMS. In this section, a single, integrated model of OA and
The objectives of the loading problems were to minimize MHSS is presented. The model extends and modifies the
the system unbalance and to maximize the throughput sat-works of Pauloet al. (2002) and Lashkart al. (2004).
isfying the technological constraints on the system. However, the structural changes introduced in the previous

Rai et al (2002) applied a fuzzy goal-programming two models are substantial, resulting in a model which in
concept to model the problem of machine-tool selection fact represents a new formulation of the problem.
and operation allocation with the objective of minimizing The complete statement of the 0-1 integer program-
the total cost of manufacturing operations, material han- ming model is as follows:
dling and set-up. A genetic algorithm (GA)-based approach P(OA-MHSS):
was used to solve this model. Moon et al. (2002) formu- 1) Minimize Total Cost

lated a 0-1 integer programming model of an integrated n P(i)s(ip) m
machine tool selection and operation sequencing, and used ' d. oc. i ip) + SCM. +
a genetic algorithm approach to solve the model. The ! Z SJ(p)YSJ(p) JZ:;‘ 1
model determines machine visiting sequences for all part o .
types, such that the total production time is minimized and . P() S(ip) H H _
the workloads among machine tools are balanced. z d; Z Z z Zz ZTithEXthFE(Ip) (1)
Yang and Wu (2002) developed a genetic algorithm- =1 ‘p=1's=1 j03ps h=1 h=1 eE
based method to obtain the solution to a mixed-integer :
programming model of the part type selection and machine . .
loading problems by minimizing the difference between 2) Maximize Compatibility
maximum and minimum workloads of all the machinere- E H H i
| )IPIPAUERIT) 39 I IR
Given the complexity of the MHSS problem, only a 21 ‘h=1 h—1 i=1 p=1 s=1 j0J
few researchers have addressed the material handling prob-
lem using GA-based algorithms. Lim (1997) considered

i=1  p=1 s=1 j0Jy

h
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There are two objectives associated with the model
equation (1) minimizes the costs related to theufeatur-
ing operations, set ups, and MH operations; equat®)
maximizes the “compatibility” of the part types atie
MH equipment assigned to handle the parts.

The constraint equation (3) is to ensure that grch
type is processed under a single process plan.cthe
straint equation (4) ensures that for a giyig), each op-
eration of the selected process plan is assignedljoone
of the available machines. The constraint equafdns to
ensure that, once a machine is selected for oparatof
(ip), then all the MH operation- sub-operation combina-
tions () corresponding t¢sj) have to be performed. The
MH operation- sub-operationsA) refer to the MH activi-
ties at a machine when the part arrives for a natufing
operation. The operatidmnrefers to the main MH operation
in relation to the manufacturing operatisnwhereas the
operation/ refers to a secondary MH operation that nor-
mally follows the main MH operation, depending te t

characteristics of the part type in question. The &pera-
tion- sub-operations are defined below:

Sub-operationshk

O = orientation change
P = position change

Q = quantity change

S = sequence change
T = time change

N = no change

Operationsh_
= loading/unloading

H = handling/rehandling
T = transportation

| = inspection

S = storage/retrieval

The constraint equation (6) states that edél ¢ombina-
tion corresponding to operatianof (ip), to be performed
at maching, has to be assigned to only one piece of MH
equipment which is available and able to perforrat th
combination. The constraint equation (7) ensurexd, tif
machingj is selected, then at least one operation has to be
allocated to that machine. The constraint equa(@n
guarantees that the allocated operations do ndebua se-
lected machine beyond its capacity. The constrainta-
tion (9) specifies that a piece of MH equipmeray be
chosen only after another piece of equipmeéfias been
selected. The constraint equation (10) is to enthakonce
a piece of MH equipment is selected, then at leastMH
combination k%) has to be assigned to it. The constraint
equation (11) states that the allocated tasks ddoad a
selected piece of MH equipment beyond its capaéity.
nally, The constraint equation (12) imposes theaty re-
strictions on the variables.

The parameteC,; in the objective function equation
(2) is proposed by Pauket al. (2002) as a measure of the
“compatibility” of a piece of MH equipment and arpa
type. The three rating factorg/(;., W, andi#;) are largely
subjective, and relate the key product variables pw-
posed by Ayres (1988), to the MH equipment andptiue
type. For details, see Pawdbal. (2002).

4 EXPERIMENTS AND DISCUSSION

4.1 A numerical Example

The following numerical example is taken from Paato
al. (2002), and is solved using genetic algorithm. Dmue
space limitation, however, only selected portioristhe
problem data are presented. The full set of dad@adlable
upon request.

It is assumed that, over the planning period glazei
=1,...,14 part types to be processed=h...,10 machines
each with a capacity of 57,600 seconds. Table %epts
the data for part type 7 which is used here asxample.
Part type 7 haP(7) = 2 process plans. The capabilities of
the machines to perform the operations of this fype are
as follows. Under process plan= 1, this part type has
S(71) = 2 operations with the indices € {1,2}, whereas
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under process plam= 2, it hasy(72) = 2 operations, with
indices s ¢ {1,2}. Operations = 1 of process plap = 1 for
part type 7 can be completed on any of the macljires
J711 = {1,6,7,9,10}, and operatios = 2 on any of the ma-
chinesj € J;1, = {3,7,8}. The demand for part type 7 as
well as the machine setup costs are also list&clne 1.

Table 1: Manufacturing operations tiraip) and costs
OC(ip), part type demand$ and machine setup coS§

Part Typesi
7 Machine
Process Plam Set-up
1 2 Cost
Machine, | Operations | Operations SG
j 1 2 1 2
10 7
1 $15 $11 120
11
2 $14 230
7
3 $3 450
9
4 $18 60
5 180
8
6 $11 220
5 10
7 $3 $6 310
11 8
8 $10 $7 90
9 11
9 $14 $18 260
9 9
10 $11 $11 550
Demanddi 90

The MH requirements are derived from the dataan T
ble 1, and they explain the sequence of MH opearatith
operations required when a part arrives at a mactur a
manufacturing operation to be performed. For examgp
part arriving at machine may neddn)Load/Noneand
Transportation/Nongimplying that, at that machine, the
part is loaded with no specific requirements, amdhien
transported to the next machine. The data alsdfgpelat
MH equipment are capable of performing these Mkhco
binations.

It is assumed that the information about the MHdtco
Tijnie for each part type, for various/) combinations and
for various MH equipmeng with respect to each machine
is available. The times needed by MH equipmentdn p
form the various operation/sub-operation combimegiare
also available.

Table 2 shows the relative weight of the produari-v
ablet on all part types. From this table, it can be ster
each part has different ratings correspondingsalitarac-
teristics, with scales ranging from 1 to 5. Forrtpgpe 7

for example, it is noted that the part is ratechlcomplex-
ity and precision which means that this part exhibivery
low level of these two key variables. In other wsrgart
type 7 comprises a low measure of the geometricali-o
mensional information embodied in it and is notdhtd
high tolerance in manufacture. The very high vdbredi-
versity indicates that the corresponding part farhihs a
large number of parts. It also can be inferred thist part
type is manufactured in large-size batches. Thg i@w
rating for mass/linear dimension indicates thatpghgsical
size or dimension of the part is small.
In this example, there are nine different typedvibt

equipment which are available to perform the MH

Table 2: Tha¥; values for the numerical example

Part, Batch | Massl/linear
i Complexity Precision Diversity| Size Dimension
1 2 2 3 2 2
2 5 5 1 3 4
3 3 3 1 2 3
4 4 2 2 4 4
5 2 3 4 1 3
6 3 2 1 2 2
7 1 1 5 5 1
8 4 3 2 1 2
9 2 1 2 1 3

10 2 1 3 3 3
11 2 2 2 4 1
12 4 5 1 2 3
13 4 2 2 5 2
14 2 3 2 2 4

operation/sub-operation combinations, each witagacity
of 57,600 seconds during the planning period. Table
shows the relative weight of the product varigtda mate-
rial handling equipmeng. The rating scales range from O
to 5 for the material handling equipment against th
choices of manufacturing technology.

Table 3: ThaN,, values for the numerical example

Equipment,| Com- | Preci- | Diver- Batch Mass/linear
e plexity sion sity Size Dimension

1.Light-

load robot 4 4 2 4 1

2.Heavy-

load robot 4 4 2 4 4

3. Human 5 4 4 2 2

4. Powered

hand truck 1 1 4 3 3

5.Forklift

truck 1 1 4 4 5

6.Roller

belt  con-

veyor 2 2 4 3 4

7. Light belt

conveyor 2 2 4 3 2

8. AGV 4 4 1 1 2

9. AS/RS 4 4 5 3 3
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4.2 Multi-objective Genetic Algorithms (MOGA)

In this section, we present a multi-objective genatgo-
rithm for the solution of the mathematical modetgented

in section 3. The algorithm will generate the pardeess
plans, operation, machine and MH assignments fer th
model.

4.2.1 Real-coded MOGAs

MOGA codes the optimization problem in the modelkas
chromosome by using real number-coded strings bavin
0's to 9's where eachenecorresponds to an operation al-
location and MH selection sequence possibility inick
one part is assigned. The structure of gemeis repre-
sented in Table 4. The sequence denotes the famati
operation allocation and MH system selection. s thble,
Seq. No. is the sequence number, O1 is manufagtopn
eration 1, and O2 is manufacturing operation ZhinMH
Selection section, the three characters refergdvihl op-
erationh, the MH sub- operatiof, and the manufacturing
operations, respectively, as explained earlier. For example,
LO2 denotedoad/unload-orientation chang®r manufac-
turing operatiors=2.

Table 4: Operation allocation and material handfipgtem
selection sequence possibility

Si\elg' OA MH Selection
O1] O2 | LO1| TN1 | 101 | LO2 | TN2 | IP2 | SNz
1 1 3 1 4 3 1 4 3 9
2 1 3 1 4 3 1 4 6 9
24300

The table shows a few of the possible sequenaes fo
operation allocation and material handling systetacion
for part 7. Sequence number 1 is taken as an erarfipe
first manufacturing operation will be performed ora-
chine 1 and the second operation on machine 3:6hd-
ing/unloading-orientation” combination for manufaghg
operation 1 will be carried out using MH equipméri.e.,
light-load robot). “Transportation-none” will be fiermed
by MH equipment 4 (i.e., powered hand truck) arel‘th-
spection-orientation” combination by MH equipment 3
(i.e., human.) “Loading/unloading-orientation” famanu-
facturing operation 2 is performed by light-loadbot
“transportation” by powered hand truck; “inspection
position” by human; and “storage/retrieval’ comhioa
by AS/RS. Similar interpretations can be made fibreo
sequences. Table 5 represents the number of fssb
guences for each part type and the number of digitthe
numerical example described in section 4.1

Figure 1 illustrates the chromosome design in MOGA

for part type 7. The length of the chromosome & shm

of the digits required to represent the maximum Ipeinof
sequences. Hence, the length of the chromosomghdor
numerical example is 80. Figure 1 only depicts dhaes
representation of part 7 corresponding to the djoeral-
location and material handling system selectiorusaqge
number 2; however, the general design of the stractis
the same for other part types, and similar intdgi@ns
can be drawn for other gene representations.

Table 5: Number of possible sequences for f eachapal
number of digits
Part Maximum Sequence Number
309150
282150
316500
681075
372825
810000
24300
660825
28350
214650
168300
247725
810000
9450
TOTAL

Number of Digits

Blo|o|~N|o|a|s|w|n|-

11
12
13
14

Old|o|o|o|o|v|o|uv|o|o|o|o|o|o

[e]

Part Type 7

[o[o] o] o] 2

N

OA & MHSS possible sequence #

Figure 1: The chromosome representation for MOGA fo
part type 7

4.2.2 Fitness Function

Genetic algorithms have been largely applied talein
objective optimization problems. In order to apghnetic
algorithms to a multi-objective optimization profiethe
multiple objective functions may be combined intsirzgle
“fitness” function.

The weighted sum (WS) approach has been success-
fully applied to multi-objective GAs by Murata aighibu-
chi (1996), Gravel et al. (1998) and Morad and dlalz
(1999), and will be used her in order to obtaindaeof so-
lutions. This approach assigns weights to eachctige
function and combines the weighted objectives mtsin-
gle objective function. Hence, the objective fuastof the
model P(OA-MHSSpecomes:
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Min f =w;F; — wF,
where:
w;, =weighti,i=1, 2
F1 = objective function 1 (total costs)
F2 = objective function 2 (compatibility)

(13)

4.2.3 Constraints

Violation of constraints in a GA is handled in tways.
The first method prescribes the chromosomes todee
signed in such a way that constraints are not tadlavhen
new solutions are generated. This method incretises
computational time in generating new solutions ibul-
ways generates feasible solutions. The second chetho-
structs a ‘penalty function’ to penalizes thedin of a so-
lution that violates a certain constraint. This noet has
been the most popular for constrained optimizalipiGA,
but it increases the search time of the algorit@amsider-
ing the structure of constraints (8) and (11) im model,
the penalty function method is the more suitabddnejue.
These two constraints are converted into penaltgtfans
and combined with the objective function, as exmdibe-
low.

4.2.3.1 Machine Time Penalty Function (P1)

Machine time penalty comes into effect when openail-
location time on a machine exceeds the availabte tn
that machine, i.e. when constraint (8) is violafEde pen-
alty for machine time (P) is given by:

0 ifMA > ML
Plz{
K (MA — ML)

where:
K

MA
ML

(14)
if MA < ML

a positive constant
machine availability
machine load

4.2.3.2 Equipment Time Penalty Function (P2)

Equipment time penalty is the penalty for violatiegua-
tion 11, i.e. when the total operation time of mialehan-
dling equipment exceeds its capacity. The penatty f
equipment time (P) is given by:

0 ifEA>EL
P2 :{ (15)
K (EA—-EL) if EA<EL
where:
K = apositive constant
EA = machine availability
EL = machine load

Both penalty functions are merged with the maireotiye
function to form the fithess function of a chromosn

Fitness f + P1 + P2 (16)

4.2.4 GA Operators

4.2.4.1 Selection Strategy

Reproduction is usually the first operator applied a
population. Reproduction selects good strings popula-
tion and forms a mating pool. Both stochastic aetdiohi-
nistic sampling mechanisms are used in this study.

The best known stochastic method is Holland’s pro-
portionate selection or roulette wheel selectidine basic
idea is to determine selection probability (alstlecasur-
vival probability) for each chromosome proportiot@akhe
fitness value. In addition, the elitist strategymployed to
specify that the best individual always survivetgan into
the next generation so as to enable the GA to cgave
faster. In the absence of such a strategy, it ssipte for
the best chromosome to disappear due to sampliog, er
crossover or mutation.

4.2.4.2 Crossover Operator

Blended crossover (BLX@ ) is applied in this MOGA ap-
plication. This operator produces offspring on gnsent
defined by two parents and a user specified paem@t
as described below.

Offspring 1 =y.Parentl + (7).Parent2

Offspring 2 = (1y).Parentl +.Parent2

y = (1 + 21).RAND1 -«
where offspring land offspring 2 denote encodedgdes
variables of the offspring, members of the new afmn,
and parent 1,2 denote the parents, a mated paieabld
generation. The random number, RAND1, is a uniform
random number in the range [0-1].

4.2.4.3 Mutation Operator

The mutation operator alters the gene of a seleched-
mosome by a random change with a probability etmal
the mutation rate(py). A number between 0 and 1 is gen-
erated at random. If the random number is less duarl

to pm, then the mutation occurs. The mutation operator
simply replaces a gene (i.e., a real parametereyafu a
chromosome with another number randomly choseniwith
the bounds of the parameter value.

4.2.5 GA Procedures

The algorithm operates by calling several procesjure
which can be summarized as follows:
1. Procedure GENERATE: The initial population is
randomly generated. The string for the population
is described in Figure 2.
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2. Procedure EVALUATION: The fitness value of Table 6: Results obtained by GA using the weigsich
each string recorded in the population is evalu- method

ated. , Total
GA'’s General Pa- o
rameters Wi | W, Cost Compatibility
( START ) 1 1 $ 15,007 322
’ Population Size: 220 1 24 $ 15,697 332
v Increase number of Crossover Probability: 0.95 1 4 $ 16,500 342.2
IS [l generation by one Mutation Probability: 0.2 1 60| $17,05p 349.3
lem data and
GA parameter Maximum Generation: 100 1 8( $ 18,541 364
v 1 100| $ 19,492 370.5
Call Procedure Generation = NO
GENERATE Max Genera-
s tion ?

S

Table 7: The model solution corresponding to fesperi-

Call Procedure ment
EVALUATION
Call Procedure Part Type 7
SELECTION Manuf.. MH Opera-
call Procedure Plan | Operation | Machine tions Equipment
CROSSOVER Create Final Report (un)Load/ Light-load
Call Procedure and 1 7 None robot
MUTATION Call Procedure
SUMMARY Inspection / Roller belt
v Orientation conveyor
Create Report fu ’ Transportation /| Light belt
this generation ( TERMINATE ) Orientation conveyor
[ 1 (un)Load/
2 3 Orientation Human
Figure 2: Flow chart of real coded GA Inspection/ Roller belt
Position conveyor
3. Procedure SELE_CTION/REPRODUCT_ION: A Transportation /| Power hand
new population is created by selecting good None truck
strings among the old population and forming a SgR/None AS/RS
mating pool.

4. Procedure CROSSOVER: Two new string records
are created by randomly selecting two strings
from the current population and mating their
string structures.

5. Procedure MUTATION: A new string record is
created by altering the value of gene or genes in
one randomly selected string structure.

During the first manufacturing operationJight-load
robot performs the MH operatiolvad/unload the part is
then inspected, requiring amientation changend using a
roller belt conveyar Next, the part istranspored to the
next machine, using a light belt conveyor, andatgenta-
tion changed. At machine 3 to perform the next manufac-
turing operation, the part requires the MH operatio
load/unload, using a human. It is thenspeced and its
position changd using aroller belt conveyor next, the
part istranspored, on a power hand truck, to the storage
area using the AS/RS equipment.

Figure 3 present the objective function valueanfro
It should be noted that genetic algorithm-bdsedris-
tics do not guarantee truly optimal solutions, #relselec-
tion of a “best” solution is left to the decisionaker to
choose a solution, from among the set of Parettimap
solutions, that strikes an acceptable balance lestviee
two objective function values. However, experieras
shown that, in general, the computation of a welese

4.2.6 Computational Experience

The GA was coded in Java language program, and the
computations were carried out using an Intel Pemtiy

1.7 GHz computer, 256 MB RAM. The program contains GA.
about 1600 lines.

A summary of the results obtained by GA is shown i
Table 6, and the portion of the results for papiety (cor-
responding to the case of ¥\, W,=2) is presented in Ta-
ble 7. Part type 7 will be processed under propéss 1.
Manufacturing operation 1 is assigned to machinand
manufacturing operation 2 is assigned to machine 3.
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set of Pareto-optimal solutions is usually time staning
(Laumanns et al., 2002).

380

370 <

w
(=2}
o

L

w
1
(=}

Compatibility
~
<)

w w
w
o
L

w
N
o

310 T T T T
$14,800  $15,800 $16,800 $17,800 $18,800

Total Cost

$19,800

Figure 3: Solutions obtained using the weighted-sum
method

5 CONCLUSIONS

In this paper, a mathematical model is developesinil-
taneously solve the problems of operation allocatnd
material handling system selection. The purpodbisf
multi-objective model is to determine: (i) the alidion of
the different operations of the part types to maebiso as
to minimize the total costs of operations, mactse&up
and material handling; and (ii) the assignmenthef MH
equipment to the MH operation/sub-operations cpord-
ing to the operation allocations (part, plan, opera ma-
chine) so as to maximize the compatibility of MHugy
ment with part type. The solutions to the modet ar
generated using a genetic algorithm-based appréaom
the range of solutions generated by the algorithendeci-
sion maker may choose the one that achieves aptabte
balance between the two objective function values.
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APPENDIX: NOTATION

Indices and sets

i€{1,2,...n} parttypes

p€ {1,2,...P(i)} process plans for part type

(ip) a part typé, process plap combination

s€{1,2,...S(p)} operations of part typeunder process
planp

he{1,2,...H} major MH operations

heE{1,2,... I:I} MH sub-operations

(hA) a MH operation-sub operation combina-
tion

e € En; {1,2,..,E}set of MH equipment that can handle the
combination /) at maching

J € Jps{1,2,..,m} set of machines that can perform opera-
tion s of (ip)

Q) an operatios, maching combination

Parameters

b; time available on machijdunits of time)

0OG;(ip) cost of performing operatianof (ip) on ma-
chinej (%)

d demand for part tyggunits)

SG setup cost of machij€$)

ts (ip) time for performing operatios of (ip) on
maching (units of time)

Tine MH cost of performing thehf)) combination
for part typel on maching using MH equip-
mente ($)

Le time available on MH equipmest(units of
time)

Ihvie time for MH equipmené to perform the Ifh)
combination (units of time)

Wi relative weight of the product variabieon
part typei

Wt relative weight of the product variabieon
MH equipmente

Wiie relative degree of the capability of MH
equipment to perform thelf#) combination

Cei compatibility between MH equipmestand

part typei

Decision Variables

Z(ip) € {1,0} =1 if part typei is processed under proc-
ess plarp; 0 otherwise

Ys(ip) € {1,0} =1 if machingj is used to perform opera-
tion s of (ip); O otherwise

Agni(ip) € {1,0} = 1 if (ip) requires the combinatior/)

at maching where manufacturing opera-
tion sis performed; 0 otherwise

= 1 if the combinationt{#) requires MH
equipmente at maching where manu-
facturing operations of (ip) is per-
formed; O otherwise

Xspieip) ¢ {1,0)

M; € {1,0} =1 if machingj is selected; 0 otherwise

De ¢ {1,0} =1 if MH equipmente is selected; 0 oth-
erwise
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