
Proceedings of the 2005 International Conference on Simulation and Modeling
V. Kachitvichyanukul, U. Purintrapiban, P. Utayopas, eds.

ABSTRACT

We try to find the best configuration of a stochastic dis-
crete-event simulation model when multiple criteria are
simultaneously involved in the decision making process.
We develop and investigate the performance of a genetic
algorithm that makes use of an interval-based variant of the
Prométhée MCDM-method to calculate the fitness of the
chromosomes. We illustrate the performance of this algo-
rithm by applying it for the optimization of a simulation
model for incident management in a call centre.

1 INTRODUCTION

While the optimization of simulation models is extensively
studied in the literature, it is almost exclusively done from
a single-response point of view. In reality however, one of-
ten encounters problems where the assessment of the be-
haviour of a system depends on multiple performance
measures. In these cases, the solution that is perceived as
the “best” solution will often turn out to be a compromise
solution, which may differ significantly from the optimal
solutions that would be found when following a single-
response approach. Different system configurations will
typically improve some performance measures while dete-
riorating others. The selection of the best candidate (sys-
tem configuration) among a finite set of alternatives as-
sessed for a finite set of criteria (performance measures) is
a typical multicriteria decision making problem.

The algorithm that we propose in this paper combines
a classical MCDM-method with a genetic algorithm, which
enables us to use the algorithm for the selection of the best
system configuration in a combinatorial optimization prob-
lem, where the set of candidates, although finite, is prohibi-
tively large.

This paper is organized as follows. In section 2, we
start with a general description of the studied optimization
problem. In section 3, we give a brief overview of the
Prométhée MCDM-method and its interval-based variant

Prométhée-i. In section 4, we propose a genetic algorithm
that makes use of the Prométhée-i method to calculate the
fitness of the chromosomes. In section 5, we give a brief
description of a simplified call centre model. In section 6,
we present the results of a series of experiments that made
use of our genetic algorithm to optimize the configuration
of the simulation model proposed in section 5. Finally, we
present our conclusions.

A GENETIC ALGORITHM FOR THE MULTICRITERIA OPTIMISATION
 OF COMPUTER SIMULATION MODELS

F. Van Utterbeeck, R. Van Loock and H. Pastijn

Royal Military Academy
Avenue de la Renaissance, 30
B-1000 Bruxelles, BELGIUM

2 DESCRIPTION OF THE OPTIMISATION
PROBLEM

Our aim is to find the best feasible configuration (accord-
ing to the Prométhée MCDM-method, which we describe
in the following section) for a stochastic discrete-event
simulator when the number of possible configurations is
prohibitively large (i.e. evaluating all the candidates is im-
possible within the allocated time-budget).

Every configuration of the simulator can be defined by
a vector α = (x1, x2, ... , xm), where xi represents the setting
for the ith input parameter of the simulator. The n corre-
sponding performance measures are defined by the vector
β = (y1, y2, ..., yn) where β = f(α). We consider the form of
the function f to be unknown, the values of the various per-
formance measures are estimated using simulation. A con-
figuration is considered feasible if a given set of con-
straints of the form g(α, β) ≥ c are simultaneously satisfied.
Note that the feasibility of a configuration can in general
only be verified after the execution of the simulation, as
the feasibility constraints are functions of the performance
measures.

We define the best configuration αopt as the feasible
configuration that would be selected by the Prométhée
MCDM-method if we applied this method on the set of all
possible feasible configurations.

Van Utterbeeck, Van Loock and Pastijn

3 THE PROMETHEE AND PROMETHEE-i

MCDM-METHODS

For a complete overview of the original Prométhée method
we refer to Brans et al. (1986). This MCDM-method is
based on the assessment of a finite number of n candidates
(configurations) on k criteria (performance measures).

For each criterion a pairwise comparison (difference
of assessment) of candidates a and b is translated on the
interval [0,1] into a preference indicator Pj(a,b). One of six
different types of preference indicator functions can be se-
lected. These Pj(a,b) are aggregated over the set of all cri-
teria by :
 π(a,b)= Σjωj Pj(a,b),
with ωj in [0,1] being the normalized weight of criterion j.
Then we calculate for each candidate a the strength φ+(a)
and the weakness φ-(a):
 φ+(a)=(1/(n-1)).Σxπ(a,x),
 φ-(a) =(1/(n-1)).Σxπ(x,a).
Finally we calculate the net dominance φ(a):
 φ(a) = φ+(a) - φ-(a).
The best alternative is the one with the highest net domi-
nance.

The Prométhée-i method is an interval-based variant
of this method that can be used when the assessments are
not crisp data, but are defined by intervals. Pastijn et al.
(2003) showed how this method can be used for the selec-
tion of an optimal configuration amongst a limited number
of candidates for the configuration of a stochastic discrete-
event simulator. The crisp assessments of Prométhée are
then replaced by either the interquartile interval or a confi-
dence interval of the mean. They compared the application
of the original Prométhée method using the mean values
across replications with the Prométhée-i method and found
that the use of Prométhée-i with interquartile intervals gen-
erally gives the best results (requiring the smallest number
of replications for a correct ranking). The following para-
graph summarizes the method:

When we have executed m replications of a stochastic
discrete-event simulation, then we obtain for each alterna-
tive configuration m assessments for each criterion (per-
formance measure). These m assessments can be repre-
sented for alternative a by an interval [al,au], which we can
take either as the interquartile interval, or as a confidence
interval on the mean. All the arithmetic of Prométhée is
now extended, keeping intervals all along the calculations,
by means of the following definitions:
 [al,au] + [bl,bu] = [al+ bl , au+ bu],
 [al,au] - [bl,bu] = [al- bu , au- bl].
We obtain consecutively:
 Pj(a,b) = [Pj

l(a,b) , Pj
u(a,b)],

 π(a,b) = [πl(a,b) , πu(a,b)],
where
 πl(a,b) = Σjωj Pj

l(a,b) and
 πu(a,b) = Σjωj Pj

u(a,b).

Then we calculate
 φ+(a) = [φ+l(a) , φ+u(a)],
 φ-(a) = [φ-l(a) , φ-u(a)],
where
 φ+l(a) =(1/(n-1)).Σxπl(a,x),
 φ+u(a) =(1/(n-1)).Σxπu(a,x) ,
 φ-l(a) =(1/(n-1)).Σxπl(x,a),
 φ-u(a) =(1/(n-1)).Σxπu(x,a).
And finally
 φ(a) = φ+(a) - φ-(a) = [φl(a) , φu(a)].

In addition the original Prométhée method is applied
by taking into account all the worst bounds of the assess-
ment intervals [al,au] and another time by taking all the
best bounds of these assessment intervals [al,au] for all
candidates on all criteria. This yields for each candidate
another interval [φl’(a) , φu’(a)] .

Finally this Prométhée-i procedure returns a trapezoi-
dal fuzzy number [φl(a) , φl’(a) , φu’(a) , φu(a)] for each
candidate a. On these fuzzy numbers we apply the Yager
operator Ψ (Yager, 1981), (Detyniecki et al., 2001), and
the best candidate corresponds to the highest value for this
Yager operator Ψ.

4 THE GENETIC ALGORITHM

For an in-depth discussion of genetic algorithms, we refer
the reader to Goldberg (1989), Davis (1991), Chambers
(1995) and Reeves (1997). The pseudo-code of our genetic
algorithm is represented below:

 Program Begin
 Generate Random First Generation of Chromo-
somes;

 While Stopping Criterion not reached
 Begin
 Current chromosome =
 First Chromosome of Current Generation;
 Repeat
 Initialize Simulation Model with
 Configuration Represented by
 Current Chromosome;
 Run m Replications of the Simulation;
 Save Performance Measures;
 Current Chromosome =
 Next Chromosome of Current
 Generation;
 Until End Of Generation Reached
 Rank Configurations of Current Genera-

tion with Prométhée-i;
Modify Ranking to Promote Feasible
Configurations;
Attribute Fitness to Chromosomes;

 Generate New Current Generation;
 End

 Program End
The following paragraphs briefly describe the different fea-
tures and options that have been implemented in the differ-
ent parts of the code.

Van Utterbeeck, Van Loock and Pastijn

4.1 Chromosome representation

The chromosomes in our algorithm are strings of bits,
whose problem-dependent size varies depending on the
number and value range of the input parameters. Every
possible configuration α ∈ A has to be mapped into exactly
one chromosome. The first generation is generated ran-
domly.

4.2 Stopping Criterion

The stopping criterion can be defined either as a maximum
number of generations or as a maximum number of non-
improving iterations.

4.3 The Simulation

The replication length and the number of replications used
are problem dependent and require some experience with
the underlying simulation model. Our simulation models
were implemented in ARENA, and we make use of com-
mon random numbers to reduce the variability of the dif-
ference between the performance measures for two con-
figurations.

4.4 Prométhée-i ranking

All configurations in the current generation are ranked us-
ing the Prométhée-i method based on the interquartile in-
tervals for the elements of β, the vector of performance
measures.

4.5 Promotion of feasible configurations

This procedure verifies whether the performance measures
of the configurations fulfill the set of i constraints gi(α, β)
≥ ci. Every constraint has an associated weight. We define
the feasibility score of a configuration as the sum of the
weights of all the satisfied constraints.

The final ranking of the configurations is now calcu-
lated as follows: all configurations are ranked by decreas-
ing feasibility score. All ties are broken in favour of the
configuration with the highest Prométhée-i ranking. If no
constraints were imposed, then the Prométhée-i ranking
remains unmodified.

4.6 Attribute Fitness

The chromosomes are assigned a fitness value that is a
(scalable) linear function of their final ranking.

4.7 Creation of the next generation

The algorithm makes use of elitism, crossover and muta-
tion.

The elitism ensures that a specified number of the best
chromosomes are copied into the next generation without
modification. Moreover, the first-ranked chromosome is
marked as immune to mutation. Not only does this guaran-
tee the survival of the fittest genes, it also removes the
need to save the best configuration.

One of three different crossover operators can be se-
lected: the classic one-point and two-point crossover, and
uniform crossover. The uniform crossover copies a bit-
value from parents to offspring if both parents’ chromo-
somes agree on the value of the specified bit position. The
bitvalue is randomly assigned if the parents disagree.

One of two different parent-selection methods can be
selected: the classic roulette-wheel selection and the less
well-known stochastic universal selection (Baker 1987).

Mutation takes place using the classical mutation op-
erator.

Crossover and mutation rate can be fixed constants, or
can be selected to increment/decrement linearly between an
initial value and a final value.

Whenever a new child chromosome has been gener-
ated, we verify whether it is unique within the current gen-
eration. If an identical chromosome already exists, we gen-
erate another child and replace the duplicate chromosome.

5 THE SIMULATION MODEL AND THE
PERFORMANCE MEASURES

The stochastic discrete-event simulator used is a model of
an incident management process of a call centre. A com-
plete description of this model can be found in Van Loock
et al. (2003). We briefly summarize the key elements of
this simulation below. Figure 1 gives a schematic overview
of the process-flow of the model.
The incidents are initiated by the customers of the call cen-
tre. These incidents are represented by the calls that arrive
at the centre. These incoming calls follow a stochastic arri-
val pattern. The calls are subdivided into categories and
subcategories, depending on the area of expertise required
by the customer. Each category has a specified probability
of occurrence, while the subcategories within a certain
category are assumed to be equiprobable.

The resources in our model are the dispatcher(s) and
the system engineers. Each resource has its own weekly
working schedule, an hourly cost (based on the number of
skills known) and a FIFO queue associated with it. Incom-
ing calls will wait in the FIFO queue if the resource is
busy. A call will be rejected (and leaves the system imme-
diately) if the time spent waiting in a FIFO queue exceeds
a certain fixed threshold.

Every system engineer has his own areas of expertise,
which are specified in the skills matrix. Every line in the
matrix represents a subcategory, while every column repre-
sents a system engineer.

Van Utterbeeck, Van Loock and Pastijn

 Figure 1: Call Centre Process Flow

The process flow used in our model can be summa-

rized as follows. Every incoming call must pass through a
dispatcher. The dispatcher will route the call to a system
engineer whose area of expertise covers the category and
subcategory of the call. If multiple system engineers are
eligible, the dispatcher will route the call to the resource
with the shortest queue. Ties are broken in favour of the
resource located the most to the left in the skills matrix.
The dispatching time (the time needed by the dispatcher to
decide on the routing of the call) follows a stochastic dis-
tribution.

The processing time (the time the system engineer
needs to handle a call) follows a stochastic distribution, re-
gardless of the subcategory. For every processed call, there
is a fixed probability that the customer is not completely
satisfied with the assistance provided. These customers
will call back after a stochastic delay. These subsequent
rework calls will result in a decrease in the performance of
the call centre. If the customer is satisfied with the assis-
tance provided, the call is disposed and leaves the system.

We use four performance measures: waiting times in
queues, resource utilization or productivity, service level
and system cost. Waiting times in queues and resource
utilization are average values obtained from standard
ARENA statistics. Service level is expressed as the per-
centage of arriving calls which are finally disposed after a
successful handling by the available resources (and as a
consequence were not ejected from the system). The cost
of a system engineer depends on his degree of polyvalence
(number of skills). The overall system cost is a stochastic
entity due to the fact that the resources continue to work at
the end of their daily schedule until all calls waiting in
their queue at the end of the working day have been proc-
essed.

6 EXPERIMENTAL RESULTS

6.1 Problem description

We want to determine the best combination of input pa-
rameters (the number of dispatchers, the number of system
engineers and the elements of skills matrix) for our call
centre simulation. For this experiment, we define the range
for the of number of dispatchers as 1 to 4, the range for the
number of system engineers as 1 to 10 and the size of the
skills matrix as 6 rows (corresponding to the number of
skills in our model) multiplied by the number of columns
(corresponding to the number of system engineers).

We will compare the results of 5 scenarios. The first
scenario, labeled “MCDM” uses 4 criteria. The best con-
figuration will be determined using the Prométhée parame-
ters summarized in table 1 below. We refer to Brans et al.
(1986) for a detailed description of the 6 types of prefer-
ence function and the associated parameters p and q.

Table 1: Prométhée Parameters

Performance
Measure

Weight Min/max Type Q P

Productivity 6 Max 5 0.1 10
Service Level 8 Max. 3 0 5

Queue W. Time 3 Min. 6 0.5 0
Cost 9 Min. 3 0 500

We impose 4 equally important feasibility constraints, one
for each performance measure, as summarized in table 2
below.

Table 2: Feasibility Constraints
Performance

Measure
Weight Constraint

Productivity 1 ≥ 50%
Service Level 1 ≥ 90%

Queue W. Time 1 ≤ 2 minutes
Cost 1 ≤ 5000 Euro

The other 4 scenarios will be used as a benchmark. The
setup of these scenarios is completely identical to the first
scenario, except for the fact that we only try to optimize
one of the four performance measures (using the corre-
sponding parameters from table 1), while imposing the
same 4 constraints. These scenarios are labeled “Max Pro-
ductivity”, “Max Service Level”, “Min Queue Waiting
Time” and “Min Cost”.

6.2 Chromosome Representation

Our chromosome representation requires 2 bits to represent
the number of dispatchers. The skills matrix has 6 rows
(constant, equal to the number of skills in the model) and 1
to 10 columns (variable, equal to the number of system en-

Van Utterbeeck, Van Loock and Pastijn

gineers) and consists of elements that can be either true (if
the engineer possesses the skill) or false. This requires 10
groups of 6 bits. These 60 bits implicitly define the number
of system engineers, as every group containing at least one
bit set to true corresponds with a system engineer. This
gives us a fixed chromosome length of 62 bits per configu-
ration. To obtain a unique one-to-one relationship between
configurations and chromosomes, we need to apply a trans-
formation to the chromosomes: the 10 bit groups represent-
ing the engineers are ranked from left to right in decreasing
order of the integer value corresponding with their 6-bit
code. This ensures that “empty” bit groups (which are pre-
sent in configurations where the number of system engi-
neers is inferior to 10) are shifted to the right-hand side of
the chromosome.

6.3 Initialization

The initialization phase is an important step in the algo-
rithm, as we have to ensure that the selected initial chro-
mosomes cover the entire search-space as uniformly as
possible. Failure to do this might cause our algorithm to
overlook potentially interesting portions of the search-
space. To ensure this property, every initial chromosome is
generated in two steps: first we randomly determine the
number of dispatchers and system engineers, and then we
randomly generate as many 6-bit sequences as we have
system engineers. At least one bit in these sequences has to
be set to true. The chromosome is then right-filled with ze-
ros.

6.4 Results

Table 3 below contains the performance measures corre-
sponding to the optimal configurations found by our 5 sce-
narios.

All numerical results were obtained using a stopping
criterion of 200 generations or 15 non-improving genera-
tions, a generation size of 40, elitism for the top 4 chromo-
somes, a crossover-rate decreasing from 60% to 20% by
1% decrements, a mutation rate increasing from 0.1% to
0.5% by increments of 0.01% and a linear fitness decreas-
ing from 100 to 2.5 by 2.5 unit decrements.

A comparison of the MCDM-scenario with the other
four scenarios clearly shows that the configuration selected
by this scenario represents a middle ground between the
other four. If we focus e.g. on the productivity performance
measure, we note that the MCDM-scenario returns the sec-
ond-best result. Max Productivity obviously returns the
highest productivity, while in 2 out of the other 3 scenarios
the productivity drops down to just above the imposed
lower constraint of 50%.

Our experiments indicate furthermore that our algo-
rithm is quite robust. Consecutive runs of the algorithm
give very comparable results, as can be seen in table 4,

which shows the mean, standard deviation, minimum and
maximum values of the performance measures for the op-
timal configuration obtained during 15 consecutive runs of
the MCDM-scenario. The variability in the observed per-
formance measures is of the same order of magnitude as
the variability that is observed when executing 15 replica-
tions of the same configuration.

Table 3: Experimental Results

 Productivity
Service
Level

Queue
W. Time Cost

MCDM 56,86 90,46 0,62 1449

Max Productivity 64,6 90,09 0,51 2402

Max Service Level 50,9 97,11 0,18 4080
Min Queue Wait-

ing Time 50,7 96,73 0,18 3756

Min Cost 54,71 90,12 0,52 1236

Table 4: MCDM-scenario Results
 Productivity Service

Level
Queue W.

Time Cost

mean 56,86 90,46 0,62 1448,80

std dev 1,37 0,35 0,06 54,59

min 54,87 90,05 0,49 1356,00

max 58,95 91,16 0,68 1557,00

7 CONCLUSIONS

We have described a genetic algorithm that allows us to
find the optimal configuration for a stochastic discrete-
event simulator when multiple performance measures have
to be considered simultaneously. This type of algorithm
may prove particularly interesting when the decision mak-
ing authority is shared by multiple decision makers with
conflicting priorities. The optimal solutions found with this
algorithm typically represent a middle ground solution that
may be acceptable to all the involved parties.

The multi-criteria approach relies on an interval-based
variant of the Prométhée method, which is combined with
a feasibility score to obtain the ranking of the chromo-
somes within a certain generation of the genetic algorithm.

REFERENCES

Baker J.E. 1987. Reducing Bias and Inefficiency in the Se-
lection Algorithm, in Proceedings of the 2nd Interna-
tional Conference on Genetic Algorithms, J.J. Grefen-
stette (ed.), Lawrence Erlbaum Associates, Hillsdale,
NJ: 14-21

Brans J.P., P. Vincke and B. Mareschal. 1986. How to Se-
lect and How to Rank Projects: The Prométhée
Method, European Journal of Operational Research,
1986(24): 228-238

Van Utterbeeck, Van Loock and Pastijn

Chambers L.(ed.). 1995. Practical Handbook of Genetic

Algorithms: Applications, Volume I, CRC Press, Boca
Raton, Fl.

Chambers L.(ed.). 1995. Practical Handbook of Genetic
Algorithms: New Frontiers, Volume II, CRC Press,
Boca Raton, Fl.

Davis L.(ed.). 1991. Handbook of Genetic Algorithms, Van
Nostrand Reinhold, New York.

Detyniecki M. and R.R. Yager. 2001. Ranking Fuzzy Num-
bers Using α-weighted Valuations, International Jour-
nal of Uncertainty, Fuzziness and Knowledge-based
Systems, Vol.8(5), 2001: 573-592

Goldberg D.E. 1989. Genetic Algorithms in Search, Opti-
misation and Machine Learning, Addison-Wesley,
Reading, MA.

Le Téno J.F. and B. Mareschal. 1992. An Interval version
of Prométhée for the Comparison of Building Prod-
ucts’ Desig with Ill-defined Data on Environmental
Quality, unpublished working paper, Université Libre
de Bruxelles

Pastijn H., F. Van Utterbeeck and R. Van Loock. 2003.
Promethee-i selecting the best simulation model con-
figuration based on multiple performance measures,
ESS2003, Delft, The Netherlands, Oct 26-29 2003

Reeves C.R. 1997. Genetic Algorithms for the Operations
Researcher, INFORMS Journal on Computing, Vol.9,
No.3: 231-250

Van Loock R. and H. Pastijn. 2003. Performance Meas-
ures in Simulating Incident Management Processes of
a Call Centre, Orbel 17, Brussels, Belgium, Jan 23-24
2003

Yager R.R. 1981. A Procedure For Ordering Fuzzy Sub-
sets of the Unit Interval, Information Science,
1981(24): 143-161

AUTHOR BIBIOGRAPHIES

F. VAN UTTERBEECK Email: filip.van.utterbeeck@
rma.ac.be

R. VAN LOOCK

H. PASTIJN

	INTRODUCTION
	DESCRIPTION OF THE OPTIMISATION PROBLEM
	THE PROMETHEE AND PROMETHEE-i MCDM-METHODS
	THE GENETIC ALGORITHM
	Chromosome representation
	Stopping Criterion
	The Simulation
	Prométhée-i ranking
	Promotion of feasible configurations
	Attribute Fitness
	Creation of the next generation

	THE SIMULATION MODEL AND THE PERFORMANCE MEASURES
	EXPERIMENTAL RESULTS
	Problem description
	Chromosome Representation
	Initialization
	Results

	CONCLUSIONS
	Back to Table of Content

