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ABSTRACT 

Reliability enhancement in software system is a crucial and 
challenging issue. Applying efficient fault-tolerant 
mechanism can fulfill the system reliability requirement. 
This paper proposes reliability models for hierarchical and 
hybrid fault-tolerant software systems considering failure 
dependencies or related faults in software 
components/versions. Our system models are based on the 
classical Recovery Block (RB) and N-Version 
Programming (NVP) schemes which are the most 
commonly used software fault-tolerant architectures. Our 
software system reliability models are generalized for 
higher degree of fault tolerance when higher number of 
software versions is provided. We perform reliability 
evaluation and comparison of these reliability models 
together with the classical models of RBs and NVPs. 

1 INTRODUCTION 

Many critical systems, such as power plant control, flight 
control, transportation and military systems need high 
reliability. To achieve system reliability and safety 
requirement, very often fault-tolerant techniques are the 
only choice to be selected. Several techniques have been 
proposed for structuring hardware and software systems to 
provide fault tolerance. Software fault tolerance usually 
requires design diversity and decision algorithm 
considering software modules and an adjudicator. 

The first developed software fault tolerant technique is 
Recovery Block (RB), and then is N-Version Programming 
(NVP). These classical fault-tolerant techniques have some 
differences in term of judging results (adjudicator) to be 
final output. For RB, the adjudicator is called an 
acceptance tester, which acts as a computational module 
that evaluates results of all software modules, so the tester 
needs to be specially design for the task. For NVP, the 

adjudicator is called voter, which acts as a comparator of 
all software modules and choose the majority results as 
output, so the voter selects the correct output using 
majority voting mechanism.  
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These two classical models can be combined to create 
hybrid fault-tolerant techniques such as Consensus 
Recovery Block (CRB), N-Self Checking Programming 
(NSCP) and Acceptance Voting (Lyu 1996) to provide 
system fault tolerance in extension to the original RB and 
NVP schemes. 

Faults can be classified into two types: s-independent 
faults and dependent (or related) faults. S-independent 
faults usually cause distinct errors and make separated 
failures. The latter is related faults which cause correlated 
failures. Examples of related faults are faults in the design 
specification, common fault in the design and 
implementation phases. Related (dependent) fault lead to 
common-mode failure of multiple software modules. 

Many researchers have proposed various mathematical 
reliability models for RB and NVP. In previous work, 
Randell 1975 developed Recovery Block scheme which is 
the software fault-tolerant model. N-Version Programming 
(NVP) was developed in 1985 by Avizienis who directly 
applied the hardware N-Modular Redundancy to software 
architecture. In 1988, Arlat et al, proposed reliability 
modeling and evaluation of the Recovery block and N-
Version Programming with can tolerate only a single fault. 
Later in 1993, Dugan et al applied this model and proposed 
a quantitative comparison of RB and NVP schemes 
considering related faults such as probability of failure 
between two software modules and among all software 
modules. In 1996 Wu et al proposed hybrid software fault-
tolerant models which nested RB with NVP and embedded 
RB within NVP. They provided system reliability 
comparison for these architectures without considering 
related faults. In 1997, Giandomenico et al evaluated 
schemes for handling dependability and efficiency of Self-
Configuring Optimal Programming (SCOP) scheme which 
accepted consistent result (if inconsistent result occurs, 
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SCOP activates additional module to compare results for 
consistency), NVP with tie-break (enhancing performance 
of basic NVP by activating additional module to find an 
agreement in results) and NVP schemes. Xu et al, 1997, 
proposed new architecture called t/(n-1) variant 
programming and compare it with RB and NVP 
architectures considering related faults. In 1999, Berman et 
al developed reliability model for RB considering only s-
independent faults. In 2002, Leblance et al proposed a 
simple approach to estimate the reliability of software 
system that composed of a hierarchical of modules with s-
independent of software failure assumption. In summary, 
there are many literatures on new fault-tolerant software 
architectures developing as well as software system 
reliability analysis and optimization. However, none of 
them provide reliability evaluation of hierarchical or 
hybrid software systems considering related faults or 
failure dependencies in the software modules. 

In this research, we extend the work of Wu et al 1996 
considering failure dependencies in software system 
reliability analysis using sum-of-disjoint products. We 
consider hierarchical fault-tolerant schemes of multi-level 
of RBs, multi-level of NVPs and hybrid RB–NVP. We also 
propose mathematical formulations to find system 
reliability for these schemes. These system reliabilities are 
evaluated and compared with those of the traditional RB 
and NVP models. 

Assumptions and Notations used throughout this paper are 
as follows. 

Assumptions: 
1. Each software module has 2 states: functional or 

fail. There is no failure repair for each module or 
system. 

2. Reliability of each software module is known. 
3. All software modules have the same reliability, Pvi 

= Pvj 
4. Related fault between any two software modules 

have same probability of failure, i.e. PRVij = PRVkl 
5. Related faults among three or more software 

modules are assumed to be negligible. However, 
related faults due to error in the software design 
specification do exist with probability PRALL. 

6. Related fault between adjudicator and software 
module(s) are not existed. 

Notations: 
PV  Probability of failure of each software 

modules. 
QV Reliability of each software modules; 

QV = 1 - PV 
PRV Probability of failure from related fault 

between two software modules; QRV = 1 - 

PRV 
PRALL Probability of failure from related fault 

among all software modules; 
QRALL = 1 - PRALL 

PD Probability of failure of an adjudicator 
(tester or voter); QD = 1 - PD 

PDEP(X) Probability of failure of system considering 
related faults (dependent); 
QDEP(X) = 1 - PDEP(X) 

RBN Recovery Block with N modules 
NVPN N-Version Programming 

2 RESEARCH BACKGROUND 

2.1 Fault Tolerant Techniques 

Software Fault Tolerance usually requires design diversity. 
For design-diversity, two or more software modules are 
designed to meet a common service specification and 
provide for redundant computations. The modules are 
aimed at delivering the same service, but independently 
implemented. Since at least two modules are involved, an 
adjudicator is used to determine an error-free result based 
on the results produced by multiple software modules. 
Several techniques have been proposed for structuring FT 
software system. Two common techniques are discussed as 
follows. 
1. Recovery Block (RB) (Randell B., 1975) is the first 

scheme developed for achieving software fault 
tolerance. Modules are organized in a manner similar to 
a standby sparing used in hardware. RB performs a run-
time fault detection by augmenting any conventional 
hardware/software error detection mechanism with an 
acceptance test applied to the results of execution of a 
primary software module. If the test fails, an alternate 
module is invoked after backward error recovery is 
performed. Figure 1(a) presents the model of RB with 
three software modules running sequentially on a 
hardware module. Figure 1(b) presents the functioning 
sequence of the RB starting at the primary module (M1) 
where its result is tested with tester (T) to find an 
correct result. If the result is not correct, the result from 
the second module (M2) will be produced and tested 
next. The result that passes the test is considered the 
output of the RB module. 
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P(Yi) is probability of tester accepts corrects result 
while P(Xi) is probability that the tester rejects correct 
output or tester accepts incorrect result. N is the number of 
software modules. 
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Figure. 1(a) 
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Figure. 1(b) 

The probability of failure of the NVP scheme (PNVP) 
defined by Wu et al 1996 is as follows.  
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Figure 1: Recovery Block Scheme: RB3 

 
2. N-Version Programming (NVP) (Avizienis, 1985), 

which directly applied the hardware N-Modular 
Redundancy to software architecture. N versions 
(modules) of a program are executed in parallel and 
their results are compared by an adjudicator called a 
voter. By incorporating a majority vote, the system can 
eliminate erroneous results and pass on the presumed-
correct results. Figure 2(a) presents the model of NVP3 
with three software modules running parallel on a 
hardware module. Figure 2(b) shows the functioning 
sequence of the NVP3 where all software modules (M1, 
M2 and M3) produce their results and find agreement by 
voter (V).  

The reliability of NVP with use majority voting as 
decision algorithm can find by use summation of reliability 
of function modules multiply with probability of failure in 
failure modules. By select K from N software modules 
then increase K by 1 until K equal N, where K is an odd 
number. 

2.2.2 Considering Related faults 

The probability of failures of RB and NVP schemes 
considering related faults defined by Dugan 1993 are 
presented in sum-of-disjoint products forms which were 
prior modified and improved by Veeraraghavan in 1990. 
The probability of failure from related fault in all software 
versions (PRALL), the probability of failure of decider (PD), 
the probability of failure from related fault between two 
software versions (PRV) and the probability of failure of a 
software version (PV) are considered toward system 
reliability of RB and NVP schemes.  
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Figure. 2(a) 
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Figure. 2(b) 

The probability of failure of the RB scheme with two 
software modules is as follows. 
 

Figure 2: N-Version Programming Scheme: NVP3 P(RB2) = PRALL + PDQRALL +PRVQRALLQD +    (3) 
  PV

2QRALLQDQRV 
2.2 Reliability Analysis   

The probability of failure of the NVP scheme with 
three software modules is as follows. In this section, we present reliability analysis models for 

RBN and NVPN schemes when all failures are assumed s-
independent, and in another assumption where there exist 
related faults in the software variants including faults 
between and among all software variants which are PRV 
and PRALL, respectively. 

 
P(NVP3) = PRALL + PDQRALL +  

PRVQRALLQD(1 + QRV+ Q2
RV) +   (4) 

P2
VQRALLQDQ3

RV
 (1 + 2QV) 

2.3 Sum of Disjoint Products 
2.2.1 Considering S-Independent Faults 

A sum-of-disjoint-products (J.B. Dugan 2001) is an 
alternative method to present a union of sets. By 
considering sum of the probabilities of individual failure 
events yields the exact unreliability (i.e. probability of 
failure) of the system. The system unreliability is 

. A sum-of-disjoint-products method is 
represented in the following form. 

][Pr 1∪ p
i iCob =

The probability of failure of the RB scheme (PRB) with s-
independent faults defined by Berman et al 1999 is as 
follows.  
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P(NVP3) = PRALL + PDQRALL +  
   PRVQRALLQD + 
   PRVQRALLQDQRV  +  
   PRVQRALLQDQ2

RV  + 
   P2

VQRALLQDQ3
RV  + 

   P2
VQRALLQDQ3

RVQV + 
   P2

VQRALLQDQ3
RVQV 

where iC is the part of the universal set that is not in 
Ci, i.e the negation of Ci. Each term in the right-hand-side 
of the expression in equation 5 is a disjoint product, where 
all the terms are mutually exclusive. 

 (7) 

3.2 Generalized Reliability Models 

The reliability model formulations represented with sum of 
disjoint products are quite complex when the number of 
software modules, N, is large. So we apply a mathematical 
induction technique to simplify the probability of failure 
(i.e. 1- reliability) of RBN  module resulted as following. 

3 RELIABILITY MODELS OF SOFTWARE 
FAULT TOLERANT SYSTEMS WITH FAILURE 
DEPENDANCIES 

In this section, we proposed mathematical models to find 
system reliability of RB and NVP schemes considering 
related faults. 
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3.1 Formulation by Sum of Disjoint Products 

With RB3 scheme, causes of system failure are 
1. Failure of all software versions due to fault from 

the software specification i.e. PRALL. 
2. Failure of the adjudicator i.e. PD. (8) 
3. S-independent failure of a software version and 

related fault in the remaining two software 
versions. There are three possible distinct events 
i.e. PV1PRV23, PV2PRV13 and PV3PRV12. 

From equation 8, each term is represented as a disjoint 
product. There are two common terms PRALL and PD that 
always exist at any value of N. The probability of failures 
of RB2 and RB3 can be obtained by substituting N =2 and 
3, respectively.  4. S-independent failure of three software versions 

i.e. PV1 PV2PV3 = PV
3. In similar way, with the mathematical induction 

method we can simplify the probability of failure or 
unreliability of NVPN module as following. 

 
Thus, the probability of failure of the RB scheme with 

three software modules is as follows.  
 

P(RB3) = PRALL  + PDQRALL + PVPRVQRALLQD + 
       PVPRVQRALLQD(1-PRVPV) +  
       PVPRVQRALLQD(1-PRVPV)2+                       (6) 
       P3

VQRALLQDQ3
RV  

 
With NVP3 scheme, causes of system failure are 
1. Failure of all software versions due to fault from 

the software specification i.e. PRALL. 
2. Failure of the adjudicator i.e. PD. 
3. Related fault in any two software versions. There 

are three possible distinct events i.e. PRV23, PRV13 
and PRV12. 

4. S-independent failure of two software versions. 
There are four possible distinct events i.e. , PV1 
PV2 ,PV1PV3 and PV2PV3 

 
Thus, the probability of failure of the NVP scheme 

with three software modules is mathematically presented. 
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(9) 
From equation 9, similar to the P(RBN) model, there 

are also two common terms PRALL and PD that always exist 
at any value of N. The probability of failure of NVP3 can 
be obtained by substituting N = 3, respectively.  

Detailed information of the derived formulation can be 
obtained from our special project study (D. Methanavyn et 
al, 2004). 

4 RELIABILITY MODELS OF HIERARCHICAL 
FAULT -TOLERANT SOFTWARE SYSTEMS 

Hierarchical fault-tolerant software system consists of 
multi-level of fault-tolerant modules. At the lower level, 
RB or NVP modules are used. Each output from the lower-
level modules will be sent to the upper-level module to 
perform similar process again and then the final output is 
released. 

The probability of failure of the hierarchical fault-
tolerant system can be considered in two parts. The first 
part is from the lower-level modules considering related 
faults. The latter is from the upper-level module where 
related faults among the lower-level fault-tolerant modules 
are assumed negligible. Hence, s-independent assumption 
is applied at this upper-level. The probability of failure of 
each lower-level fault-tolerant module is applied as the 
failure input used in the upper-level reliability analysis. 

4.1 Hierarchical Fault-Tolerant Models 

4.1.1 RBiRBj 

RBiRBj consists of i lower-level RB modules each 
consisting of j software modules and a tester, and one 
upper-level RB module which uses i outputs from the 

lower-level to test for the final output. Example of RB2RB3 
is shown in Figure 3. 

M1
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T1

M4

M5

M6

T2

T3

P1 P2

 
Figure 3: RB2RB3  

4.1.2 NVPiRBj 

NVPiRBj consists of i lower-level RB modules each 
consisting of j software modules and a tester, and one 
upper level NVP module which uses i outputs from the 
lower-level to vote for the final output. Example of 
NVP3RB2 is shown in Figure 4. 
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Figure 4: NVP3RB2 

4.1.3 RBiNVPj 

RBiNVPj consists of i lower-level NVP modules each 
consisting of j software modules and a voter, and one 
upper level RB module which uses i outputs from the 
lower-level to test for the final output. Example of 
NVP3RB2 is shown in Figure 5. 

M1

M2

M3

V1

M4

M5

M6

V2

T1

P1 P2

 
Figure 5: RB2NVP3 
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4.1.4 NVPiNVPj     (1- PDEP (NVP3)+ PD      (14) 

5 EXPERIMENTAL RESULTS 
NVPiNVPj consists of i lower-level NVP modules each 
consisting of j software modules and a voter, and one 
upper level NVP module which uses i outputs from the 
lower-level to vote for the final output. Example of 
NVP3NVP3 is shown in Figure 6. 

The following example illustrates and evaluates our 
proposed generalized models for RBs, NVPs, hybrid and 
hierarchical reliability models comparing with the classical 
reliability models, shown in equations 1 and 2. Table 1 
presents an input dataset which is the probability of 
failures from related faults, and from s-independent fault in 
a software version, PV. 
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Table 1: Input data: probability of failures 

PRALL PD PRV PV 
0.000003 0.0001 0.000374 0.0958

Figure 6: NVP3NVP3 

4.2 Proposed Reliability Analysis Models 

The probability of failure of the hierarchical and hybrid 
fault-tolerant systems presented in the previous section can 
be obtained by finding probability of failure of the lower-
level modules using equations (8) and (9), where related 
faults are considered. For the upper-level modules, we use 
equations (1) and (2), where related faults across the lower-
level modules are assumed negligible, to analyze the 
system reliability. 

Therefore, the probability of failures of RB2RB3, 
RB3RB2, RB2NVP3, NVP3RB2, and NVP3NVP3 schemes 
are presented in equations 10-14, respectively. 

 

P(RB2RB3) = 1 – {QDEP (RB3) × QD +                                                                       

Figure 7 presents reliabilities of RB and NVP modules 
with various number of software versions i.e. 3 up to 9. 
The terms DEP and IND represents dependent failure, and 
s-independent failure assumptions, respectively. As 
expected, when the number of software version increases, 
or in other words, more faults can be tolerated, the system 
reliability increases. We can see a great difference in 
reliability values when N = 3, 5, 7 and 9. In addition, the 
results agree with those in the literature showing that the 
RB module offers higher reliability than those of the NVP 
module when the same number of software versions is 
provided. When the number of software versions is large, 
the probability of system failure is getting smaller. In NVP, 
the probability of two modules producing an agreed result 
is higher when the number of software modules is larger. 
At this point, the NVP system is quite comparable with the 
RB system.  

 First, we evaluate our generalized reliability models 
RBN and NVPN shown in equations 8 and 9, where failure 
dependencies or related faults in the software versions are 
considered, by comparing with the reliability models 
expressed in equations 1 and 2, where s-independent 
failure assumption is applied . 

     [PDEP (RB3) × QD + QDEP (RB3) × PD] ×    
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0.990

0.995

1.000

3 5 7 9

NVP-DEP
RB-DEP
RB-IND
NVP-IND

 

   QDEP (RB3) × (QD)}     (10) 
P(RB3RB2) = 1 – {QDEP (RB2) × QD +  

{[PDEP (RB2) × QD + QDEP (RB2) × PD] +              

[PDEP (RB2) × QD + QDEP (RB2) × PD]2} ×  

QDEP (RB2) × QD}      (11) 

P(RB2NVP3) = 1 – {QDEP (NVP3) × QD +  

[PDEP (NVP3) × QD + QDEP (NVP3) × PD] ×  

QDEP (NVP3) × QD}     (12) 

P(NVP3RB2) = (PDEP (RB2))3 + 3(PDEP (RB2))2 ×   

(1- PDEP (RB2)+ PD      (13) 
Figure 7: RB and NVP Reliability Trend 

 P(NVP3NVP3) = (PDEP (NVP3))3 + 3(PDEP (NVP3))2 ×  
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In the next step, we consider software systems with 

various fault-tolerant architectures and a number of 
software versions. When N, which is the number of 
software version, is equal to 1, no fault-tolerance can be 
applied. When N is equal to 3, RB and NVP schemes are 
considered. Reliability evaluation and comparison when N 
= 1 and 3  are shown in Table 2. As expected, RB3 offers 
higher reliability than the NVP3’s. 

 
Table 2: Reliability Analysis (N = 1 and 3) 

# N Model Unreliability Reliability-Rank 
1 1 V  9.5800E-02 - 
2 3 RB3 1.0890E-03 1 
3 3 NVP3 2.6997E-02 2 

 
Then, we consider N = 6, where several fault-tolerant 

schemes can be applied including classical models (RB6), 
hierarchical models (RB2RB3, RB3RB2) and hybrid models 
(NVP3RB2, RB2NVP3). The corresponding reliability 
evaluation and comparison are shown in Table 3. 

 
Table 3: Reliability Analysis (N = 6) 

# Model Unreliability Reliability-Rank 
1 RB6 1.0424E-04 3 
2 RB2RB3 1.5213E-06 1 
3 RB3RB2 1.9009E-06 2 
4 NVP3RB2 3.7758E-04 4 
5 RB2NVP3 7.3512E-04 5 

 
Similarly, we also consider N = 9, where several 

reliability models are captured. The corresponding 
reliability evaluation and comparison are shown in Table 4. 

 
Table 4: Reliability Analysis (N = 9) 

# Model Unreliability Reliability-Rank 
1 RB9 1.0300E-04 3 
2 NVP9 1.1312E-03 5 
3 RB3RB3 1.1067E-07 1 
4 NVP3NVP3 2.2425E-03 6 
5 RB3NVP3 2.2591E-05 2 
6 NVP3RB3 1.0355E-04 4 

 
Figures 8 and 9 graphically present reliability 

comparison of classical, hierarchical and hybrid software 
fault tolerant systems when the number of software 
modules equals to six and nine, respectively.  

When considering the reliability of software fault-
tolerant systems with N = 6, shown in Table 3 and Figure 

8, the model with the highest reliability value is RB2RB3 
which a hierarchical RB. This result is also the same when 
N = 9, where RB3RB3 is the best. The next best belongs to 
hybrid and classical fault-tolerant software models, while 
NVP hierarchical models offer the lowest reliability values.  
With hierarchical and hybrid architectures, an important 
factor to gain high system reliability is the reliability of the 
low-level modules. With high reliability of the lower-level 
modules, the over-all system reliability can be enhanced. 
This can be explained by considering NVP3RB2 and 
RB2NVP3 models where RB is the lower-level modules 
for the first model and the NVP is for the later model. With 
RB, the first model has higher reliability at the lower-level 
than those of the later model, resulting to higher reliability 
of the overall NVP3RB2 model. With the same reason, 
NVP3RB3 model offers higher reliability than those of the 
RB3NVP3, as shown in Table 4 and Figure 9. 
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Figure 8: Reliability Comparison When N = 6 
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Figure 9: Reliability Comparison When N = 9 

 



Methanavyn and Wattanapongsakorn 
 
 Another main factor for high system reliability is the 
reliability of the higher-level module. For example, let’s 
consider RB3RB3 and NVP3RB3 models which both have 
RB scheme for the lower-level modules. The first model 
also has RB scheme for the higher-level module, resulting 
to higher system reliability than those of the counter part 
where NVP scheme is applied for its higher-level module.  

6 CONCLUSION 

In this research, we proposed mathematical models to find 
probability of failures of RB and NVP schemes 
considering failure dependencies or related faults in 
software versions. These models are generalized for any 
value of N, which is the number of software versions used 
in the schemes. 

In addition, essentially we proposed reliability models 
for hierarchical and hybrid fault-tolerant software 
architectures consisting of multi-level RBs, multi-level 
NVPs, or combinations of RBs and NVPs. We perform 
reliability evaluation and comparison of these reliability 
models together with the classical model RBN and NVPN. 

Our results indicate that hierarchical RB models 
provide higher reliability than those of the classical models 
and the hybrid model, while hierarchical NVP models offer 
lower reliability. These results agree with the literature that 
RB scheme provides higher reliability than those of the 
NVP scheme, given the same number of software versions. 
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