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Abstract

It has been a long-term standing open problem
to do inferences for infinite variance AR mod-
els. The difficulty is that the estimated parame-
ters based on the existing methods in the liter-
ature asymptotically follow some unknown dis-
tributions. This paper proposes a self-weighted
quantile estimation for this kind of models. It
is shown that the estimated parameters are as-
ymptotically normal if the density function of

the errors and its derivative are uniformly bounded.

The Wald test statistic is constructed for linear
restrictions on the parameters and it is shown
that the test has non-trivial local powers. Our
results basically solve the problem as above and
provide a new insight for future research on heavy
tailed time series. Simulation studies are carried
out to access the performance of the method and
theory in finite samples.

Key words and phrases: AR model, Infinite vari-
ance, LAD and robust.

1 Introduction

Consider autoregressive (AR) time series process
{y:} generated by the equation:

(LY) = do+ drye—1 + - + dpyi—p + €4,

where {e;} is a sequence of independent and
identically distributed (i.i.d.) errors with a com-
mon distribution Fand 1 —¢1z2—---—¢p2P =0
has all roots outside the unit circle. When Ee?
is finite, it is well known that all kinds of the es-
timators of the parameter A = (¢o, ¢1,- -+, ¢p)’
are asymptotically normal and various meth-
ods are available to do inferences for the model.
When Ee? is infinite, model (1.1 ) is called the

infinite variance AR (IVAR) model. This kind
of models displaying the features of heavy tails
are encountered in several fields, such as tele-
traffic engineering in Duffy, et al. (1994), hy-
drology in Castilo (1988), and economics and fi-
nance in Koedijk, et al. (1990) and Janson and
de Vries (1991). A comprehensive review and
more references can be found in Resnick (1997).
The statistical theory of the IVAR model is es-
sentially different from that of AR models with
finite variances.

Kanter and Steiger (1974) showed the weak
consistency of the least squares estimator (LSE)
of \. Furthermore, Hannan and Kanter (1977)
proved its strong consistency with a convergent
rate n'/%, where n is the sample size, § > « and
a € (0,2) is the stable index of g;. The limiting
distribution of the LSE had not available until
Davis and Resnick (1985, 1986). Based on the
point processes, they showed that the LSE con-
verges weakly to the ratio of two stable random
variables with the rate n'/®L, (n), where L, (n)
is a slowly varying function. The least absolute
deviation estimator (LAE) was considered by
Gross and Steiger (1979) and its strong consis-
tency was proved. An and Chen (1982) showed
that a convergent rate of the LAE is n!/%. The
asymptotic theory of the LAE and M-estimator
of A was completely established by Davis, et
al.(1992). They showed that these estimators
converge weakly to the minimum of a stochastic
process with the rate a,, = inf{z:P(|e;| > z) <
n~1}. Recently, Mikosch, et al. (1995) studied
the Whittle estimator for the infinite variance
ARMA model and showed that the estimated
parameters converge to a function of a sequence
of stable random variables. This result was ex-
tended by Kokoszka and Taqqu (1996) for the
long memory ARFIMA model. All the limit-
ing distributions in these works do not have a
close form and hence they cannot be used to do



statistical inference in practice.

How to do statistical inferences for the IVAR,
model has been a long-term standing open prob-
lem. This paper proposes a self-weighted quan-
tile estimation for this model. It is shown that
the estimated A is asymptotically normal if the
density function of €; and its derivative are uni-
formly bounded. The Wald test statistic is con-
structed for linear restrictions on the parame-
ters and it is shown to have non-trivial local
powers. Our method and theory basically solve
the problem as above. Our results can be ex-
tended for a lot of infinite variance time series
models, such as ARMA, long memory fractional
ARIMA and threshold AR models, and provide
a new insight for future research on heavy tailed
time series. This paper is organized as follows.
Section 2 presents the estimation method and
main results and Section 3 reports some simula-
tion results. All the proofs are given in Section
4.

2  Self-weighted Estimation
and Main Results

The quantile estimation was first proposed by
Koenker and Bassett (1978). It includes the
LAE as a special case and has been extensively
investigated in the literature, see for examples,
Ruppert and Carroll (1980), Bassett and Koenker
(1982), Koenker and Bassett (1982), Koenker
and D’Orey (1987), and Portnoy and Koenker
(1989). In the regression setup, one of advan-
tages of this estimation is that it does not re-
quire any moment condition on the errors to ob-
tain the asymptotic normality of the estimated
parameters. However, when we used this method
to the time series setup, such as in Koul and
Saleh (1995), Koenker and Zhao (1996) and Muk
-herjee (1999), and Ling and McAleer (2003),
this advantage is disappeared. This is because
the information-type matrix is required to have
the finite expectation for using the central limit
theorem. In regression models, this matrix is
independent of errors. But in time series mod-
els such as model (1.1), the finite expectation of
the information-type matrix requires the errors
to have at least finite variances.

The key point is in the information-type ma-
trix. This motivates us to define the self-weighted
quantile estimator (SWE) of A\(7) = A-(F~1(7),

0,---,0) as

n

. 1
A(T) = argminy ¢ gr+1 Z Ep‘r(yt - X1 ),

t=1

where p;(u) = u[r — I(u < 0)], w € R, T €
(0,1), X¢ = (L,yt, - '7yt—P+1)/7 and wy = (1 +

P y?.,)%/%. Animportant special case is when
T =1/2. We call \,(0.5) the self-weighted least
absolute deviation estimator (SWL) of A(0.5).
Define

1N X
\/ﬁt:l Wi
+S/Xt_1/\/7_l)*7'],

where s € RPTL. T,(s,7) serves as the score
function in the maximum likelihood estimation.
We can see that the corresponding information-
type matrix is bounded.

Our assumption is as follows, which ensures
that model (1.1) is strictly stationary and er-
godic, see Proposition 13.3.2 in Brockwell and
Davis (1996).

To(s,7) = [I(e; < F7(7)

(2.1)

Assumption 2.1 The characteristic polyno-
mial 1 — ¢z — -+ — ¢p2P has all roots outside
the unit circle and Ele;|® < oo for some a > 0.

Here and in the sequel, 0,(1) denotes a ran-
dom sequence converging to zero in probability
and —, denotes convergence in distribution as
n — o0o. We now can state our main result as
follows.

Theorem 2.1 If Assumption 2.1 is satis-
fied and F(x) has a positive density f(x) on
{z : 0 < F(z) < 1} with sup,cp f(z) < oo
and sup,cp f'(x) < 0o, then

VAlia(r) = A()] = ~Z= T (0,7) + 0,1
7'(1 - 7') -1 -1
—L N(O, WZ 19 ),

where () = f(F~1(7)), ¥ = B(X;—1X;_1/we)
and Q = B(X; 1 X | /w?).

This result is surprising and novel when Ee? =
oo, compared with those discussed in Section
1. We note that the self-weighted principal can
be used for other models and other estimation



methods. It gives a new way to handle with the
heavy tailed time series and will have a large
applicable area. From the proof in Section 4,
we can see that the weight 1/w; is not unique.
It remains an interesting topic to select an opti-
mal weight such that the asymptotic covariance
matrix is minimal.

The covariance matrix 3 and €2 can be esti-
mated by

. 1 X 1 X

En:—§ —
ntzl W

N I~ Xp 1 X,

2.2 Q,=—-) —1
(22) PO DR

t=1

respectively. Using the uniform kernel and the
bandwidth b, = ¢/n” with v € (0,1/2) and con-
stant ¢ > 0, we can estimate ¢(7) by

1
26,nb,,

gn(T) =

n 1 R

> =1 = b+ ()X
Wy

t=1

(2.3) <y <N ()Xot + bn},

where 6, = n~' > 1" (1/w;). Now, we can do
statistical inferences for the IVAR model, such
as testing linearity and the goodness-of-fit test.
Here, we only consider the Wald test statistic,
denoted by W,,, for the p; linear hypothesis of
the form: Hy : RA(7) = r, in the usual notation,
and give the corollary as follows.

Corollary 2.1 If Assumptions of Theorem
2.1 holds and b, = O(1/n") with v € (0,1/2),
then under Hy, it follows that

A2 . . .
200(T) (RS, (7) — 1] RE0.5, R |

[RAL(T) — 1] —2 X2,

W, =

A natural question is whether or not W, has
local powers. For this, we consider the local
alternative hypothesis:

Hln : R/\n(T) =7

where A\, (1) = A(7) + v/\/n and v € RP*! is a
constant vector. To study the local power, the
standard method is to show that the probabil-
ity measures of (y1,---,y,) under Hy and Hy,
are contiguous and then to use Le Cam’s third

lemma. We are not sure whether or not the con-
tiguity holds for the IVAR model. Even if yes,
it is difficult to prove that in the usual method
as in Ling and McAleer (2003). In Section 4, we
prove the following result by a direct method.
This result implies that W,, has non-trivial lo-
cal powers.

Theorem 2.2 If the assumptions of Theo-
rem 2.1 holds, then under Hy,,

@) Vaa(r) = A7) —¢
T(1—7) g -1
N(v, —qQ(T) STOYTY),
(i) Wn—c x5, (1),

where p = ¢*(7)v' R (REIQEIR) " Ry/[r(1—
7)] is a noncentral parameter.

3 Simulation Studies

This section examines the performance of the as-
ymptotic results in finite samples through Monte
Carlo experiments. Data are generated through
the AR(1) model,

Yr = Qo + oyi—1 + &t

In all the experiments, we use the optimal band-
width b, given in Silverman (1986, p.40) which
is automatically searched from the data.

We first study the means and standard de-
viations of the SWL (a special SWE). The true
parameters are taken to be (¢o,¢) = (0,—0.5),
(0,0.5) and (0, 0.8). Two density functions, Cauchy
and t9, are considered. The sample sizes are
7'=200 and n =400. One thousand replica-
tions are used. Table 1 summarizes the empir-
ical means, empirical standard deviations (SD)
and asymptotic standard deviations (AD) of the
SWLs of (¢o,¢). The ADs are calculated us-
ing the estimated covariances in (2.2). Table 1
shows that all the biases are very small and all
the SDs and ADs are very close, particularly,
when n = 400. As n is increased from 200 to
400, all the SDs and ADs become smaller.

To give an overall view on the approximation
of the limiting distribution to the finite sam-
ple distribution, we simulate 27000 replications
for the case with ¢ = 0.5, n; ~ t and n =
400. Denote NSWLn \/T_l[qf)n(05) 705]/&SWL7
where gy, is the SDs of the SWL of ¢. Fig-
ure 1 shows the density curves of Ngwr, and



N(0,1). The density curve of Ngw L, is approx-
imated by f(:l?z) ~ 22220100 I(:ZZi_l S NSWLn S
x;)/(270000) with o = —6.235, ©; = ;_1 + b
and b = 0.215. From this figure, we can see that
the density curve of Ngw ., is very close to that
of N(0,1). This is consistent with our theoret-
ical results. These simulation results indicate
that the SWL performs very well in the finite
samples.

We now investigate the size and power of
the statistic W,,. Again, the sample sizes are
n = 200 and 400 and the number of replications
is 1000. Cauchy and t, distributions are used.
The null hypothesis is Hy: (¢o,¢) = (0,0.5) and
the signi- significance level is 5%. Table 2 sum-
marizes the sizes and powers of W,,. From this
table, we can see that the sizes are a little large,
but they are still acceptable. In particular, when
n = 400, the sizes are getting close to the nomi-
nal significance level. The powers are increased
when n becomes large or when the distance be-
tween the alternative and the null Hy; becomes
large. These simulation results indicate that the
Wald test works well in the finite samples and
should be useful in practice.

4 Proofs

In what follows, we denote Euclidean norm by
|l - || and a bounded random sequence in proba-
bility by O,(1), and let F;, = o{es, 641, -}

Lemma 4.1 If the assumptions of Theorem
2.1 hold, then it follows that

‘ . 1
(@) NTu(VrlAa(r) = M) 7) = On( )
(i) Tp(0,7) —z N(0,7(1 - 7)Q).

Proof. Since F' is continuous, for each t,
there exists no constant vector ¢ with ¢’c # 0
such that ¢/ X; = 0 almost surely (a.s.). Further-
more, note that maxj<i<y, || X¢i—1|/we < 1 as..
Exactly following the arguments as for Lemma
4.2 in Ruppert and Carroll (1980), we can show
that

I T, (VA (1) = A7), Tl < 2(p + 1)
N1 X1 1
B e~ O R
ie. (i) holds. Since a; = (Xi—1/we)[I(er <

F~=1(7)) — 7] is strictly stationary and ergodic

with E(a¢|Fi—1) = 0 and E(aa;) = 7(1 — 7).
(ii) holds by the central limit theorem. This
completes the proof. O

Lemma 4.2 Under the assumptions of The-
orem 2.1, for any constant M > 0,

sup ||Tn(577-) - Q(T)ESH = OP(]-)'

llsll<M

—T,(0,7)

Proof. Let g¢(s,u) = (s'X;—1+uls'X;—1]) /v/n
with u € [0, M]. We define

Zi(s,u) = Ifer < x4 ge(s,u)]
—I(ey < z) — Flz + g¢(s,u)] + F(x),

where * = F~1(7). By the monotonicity of F
and indicator function, it follows that

| Z4(s,u)|
<I(z— Tnxt | <e<z+ TIIXt 1)
+F \/— ”Xt 1)) = F(z — %IIXHII)-

Thus, we have
BIZE (s )7
< 4P+ fnxt ) - <x7%nxt_1n>]

16M||Xt_1|| 172 C”Xt 1||
< e T +n e

where —2M || X;—1[|/v/n < &1 < 2M|| Xy |l/v/n
and C' is a constant. Let &} = max{y;_;,0}/w;
and &;; = max{—y;_;,0}/w;. Denote

1 n
TZFE(S,T, u) = % Zéiﬂgzt(svu)v
t=1

where ¢ = 1,---,p + 1. For any ¢ > 0, since
¢£7,(s,u) is a martingale difference in terms of
Fi, by Markov’s inequality, we have

1 n
PTG, )| > 9 < = > Bl Zuo )
C? - (1%
wy < Coyp(Ealty
(4.1) _n262; w?

as n — oo, for each s € RP and u € R, where
i=1,--,p+1.

Denote Dy = [—M, M]PTL. Since Dy, is a
bounded and closed region of RPT!, for every



d > 0, there is a finite number of open subsets
Ai(0), i =1,---,m, each with diameter d, such
that (J;~, A;(6) D Dy and A; = A;(6) N Dy
is not empty . Let s, be any fixed point in A,..
Then for any u € A,., we know that

|gt(57u) 7gt(57“7u)|
< lls = sell - 1 Xe—all/v/n < 01| Xe—a ||/ v/,
that iS, gt(srau - 5) S gt(S,U) S gt(srau +5)

By the monotonicity of the indicator function,
we obtain that

1
T;E(S,T, 0) < T;E(ST,T, 6) +—

v
Zé

F(z + g:(s,0))]
and a reverse inequality holds as § is replaced
by —4.

By the assumption given and the mean value
theorem, it follows that

‘\/‘Z€

—F(z + g:(s,0))]

(2 + gu(51,6)) -

LZ? + gt Sry id))

< sup |f(z |IZ£ |9¢(sr, £8) — g4 (s, 0)|
20 sup,, | f(z)| — Z | X1 ]2

(4.2)< . ”

=30,(1),

t=1

where O,(1) uniformly holds for all s € A, and
allr = 1,---,m . Given any small ¢ > 0 and
n > 0, by (4.2), there exists a 6. > 0 such that

(4.3) (z + gt(sp, £02))

{\/_sup sup ‘Z

T seA, t=1

—F(z + g:(s,0))]

> =1 <n.
> 3} <7
For the +4., by (4.1), it follows that
n €
(4.4) P{max|T;, (s, T, £0.) 5}
< rmax P{|Ton(sr,7,%52)| 2 5} <,

as n is large enough. By (4.3)-(4.4), we know

that
P{ sup |T;;(s,7,0)] > ¢}
SED s
+ €
< P{ma‘X|Tin($7“v7-v 6€)| > g}

o+ P{max [T (s,,7,~0.)| > §}
+P{—=sup sup IZ + g (sy, £6.))
\/_ T os€A, =1
€
~F(z+a(s )]l > 5)
(45) < 3n.
By (4.5), we can show that
X1
(4.63up ‘ Zi( ‘ — 0,(1).
sl < fz ! '

Furthermore, by Taylor’s expansion and the as-
sumption given, we have

1« X, 1
‘—Z L 1|:F($+%S/Xt_1)

By the ergodic theorem, Y 7 (X1 X[, /w)/n =
¥ + 0,(1). Furthermore, by (4.6) and (4.7), we
can claim that the conclusion holds. This com-
pletes the proof. O

Proof of Theorem 2.1. Denote T, (1) =
VA (T) = A(7)]. For any &, > 0, by Lemma
4.1 (i), there exists an integer n; > 0 such that,
when n > nq,

P{ITa(Xa(r), )l >0} <

Thus, for a positive constant M, when n > nq,

P{[|T.(7)]| = M}
< P{ITo(7)]| = M, | To(Yn(r), 7))l < n}
+P{|T.(Tn(7),7)|| =1}

(4.8) < P{ nf T (51,7 < n} te

Note that siT,(vs1, 7) is a non-decreasing func-
tion of v for any 7 € (0,1) and s; € RP*L. Writ-
ing s1 as s = vs with v > 1 and ||s| = M for
any ||s1]| > M, by the Cauchy-Schwarz inequal-

ity, we have
nf IS, |5/ T (vs, 7)]

sll=M

< M‘ mf

< inf
n(s, 7)< sl =M.v>1

[T (51, 7).



Thus, by (4.8),

(49) P Ta(r)| = M} < P{ inf |s'Tu(s,7)]

llsll=n1

<< UM}+€.

Denote Ry, (1) = sup s [8'[Tn (s, 7)=T5(0,7)]—
s'¥sq(T)| and let ¢y be the minimum eigenvalue
of ¥. Since
|8'Tn(s,7)| = | iHEfM[S'ESQ(T)] — Rn(7)
< — sup [s"Tn(0,7)],
llsll=M

by (4.9), it follows that

P{I%0(r)] = M}

< P{Rn(r) > inf [s'¥sq(7)]

sl|=M

— sup |§'T,(0,7)] — nM} + €
Isl|l=M

(4.10) > — sup [s'T(0,7)]

llsll=n1

< P{R.(r)
—nM + CoMQq(T)]} +e.

By Lemma 4.1 (ii), there exists a large constant
M; and an integer no such that, when n > ns,

(4.11) P( sup |§'T,(0,7)] > MM)

llsll=01
< P(||T(0,7)]| > My) <e.
Thus, by (4.11), when n > max{na, ns},

P{Ru(r) 2~ sup_|s'Tu(0,7)

sl =M

—nM +COM2¢1(7)}

< P{Rn(r) > sup |§'Tn(0,7)]

lsll=
—nM + coM?q(7),
sup |5/Tn(07 T)| < MMl}
sl =

+P< sup |§'T,(0,7) > MM1>

lsll=n

(412) < P{Rn(r) > coM?2q(7) — MM, —

nM} +e.

We may choose M large enough such that ¢ =
coMq(7) — My —n > 0. For the constant ¢, by

Lemma 4.2, there exists an integer ns such that,
when n > ng,

(4.13) P{Rn(r) > Mc}
gp{ sup [|[To(s,7) — T (0,7)]
lsll=

—q(M)Zs]|| > c} <e.

Thus, by (4.10) and (4.12)-(4.13), when n >
max{ni,ng,n3}, P{|| To(7)|| > M} < 4e. Fi-
nally, by Lemma 4.1(i) and 4.2, we can show
that

Vi (T) = A(7)] = ===T0n(0,7) + 0,(1).
Furthermore, by Lemma 4.1(ii) and the equa-
tion above, the conclusion holds. This completes
the proof. O

Proof of Corollary 2.1. From the proofs
of Lemmas 4.1 and 4.2, we know that 3, =
Y+ 0p(1) and Q, = Q + 0,(1). Let 6,(7)
An(T) = A(7). Then

n

1
2nb,,

1
W

A, =

t=1
{I b+ 0 ()X o < ey
<z + 0 (1) Xy + bn}
(4.14)  —Flz+0. (1) X,_1 + bn}
+Flo+0,,(r) X1 — bl } = 0,(1),

where z = F~!(7). In fact, since each term in
the summation in (4.14) is a martingale differ-
ence in terms of F;, for any ¢ > 0, by Markov’s
inequality, we have

P(|A,| >¢) < @ ;E{I[fbn +0' (1) X4

+r<eg <z+ é;(r)Xt_l +b,]
—F[z +0,,(7)X;_1 + by]

+Fz + é;(T)Xt—l — by

Since /nf,(T) = O,(1), by Taylor’s expansion,
it follows that

1 1 .
—|F 0 (N X,_1+b,] - F
2nbn;wt [z +0;,(1) Xt 1 ] (z)




#(z)[é;(r)Xt_l +b,,]

b Z—|f” &)l

n

(T)Xt—l + bn]2

1 ~
<O(— 0! (1) X1 £b,)?
—O(nbn);wt["(T) t—1 & by
||9 ||2 ZIIXt 1|?
bn ~ 1 1
0 ZE*

where £ lies between z and 460/, (7)X,_1 +b,.
Thus,

Furthermore, by (4.14), we can readily show
that ¢,(7) = ¢(7) + 0p(1). Finally, by Theo-
rem 2.1, the conclusion holds. This completes
the proof. O

Proof of Theorem 2.2. First, we note that
y¢ under Hy, depends on n. To emphasize this,
we denote y; by Y,y under Hy,. yp; is a function
of n, A, v and {&;}. When v = 0, ynt = w.
Here, y; comes from model (1.1) under Hy. It
is easy to see that y,; — y; a.s.. when n — oo.
Similarly define w,,; and X,;. Now, under Hy,,,

n

. , 1
Sn(7) = axgminy i Y ——pr (g

t—1 nt

Define T, (s, 7) = 31—y Xnt—1/wni[I(e; < F~
§'Xpi—1/+/n) — 7]//n, where s € RPTL. As for
Lemma 4.1(i), we can show that

(4.15) [|T,(Vr[An(7) = An (7)), 7)|
<2(p+1) max [Xne—al] =0 (L)
- 1<t<n /NWpy PR /n

Let Ant — (Xnt_l/wnt)[f(st S F_l(T)) — 7']
and a; = (Xy—1/w)[I(er < F7(7)) — 71]. By
Markov’s inequality, the dominated convergence
theorem and the ergodic theorem, we can show
that

(4.16)

- E antant

E ZE(anta’mLﬁ_l) = 7'(]. — T)Q

t=1

7(1—7)Q2

= q(7)6w + 0p(1).

— Xne-1 M)

Y+

Since a,; is a martingale difference in terms of
Fi, by the central limit theorem for martingale
differences and (4.16), it follows that

(417)T,(0,7) — 2 N(0,7(1 — 7)Q).

Using (4.15)-(4.17) and a similar method as for
Theorem 2.1, we can show that (i) holds. Fur-
thermore, we can show that ¥, = X + op(1),
Q. = Q4+ 0,(1) and G, (1) = ¢(7) + 0,(1) un-
der Hy,. By (i) of this theorem and note that

)+0 (0n) = 0p (1), \ /A0 (7) = A (7)] = VA[AR () = A(7)] 4 v, it is

straightforward to show that (ii) holds, see also

the proof of Theorem 6 in Weiss (1991). This
completes the proof. O
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TABLE 1

Means and Standard Deviations of SWL
for AR Models with ¢y, = 0(1000 replications)

n=200 n=400 n=200 n=400
¢ %o ¢ %o ¢ %0 ¢ %0 ¢
et ~ Cauchy et ~ t2
—0.5 | Mean .002 —.505 .001 —.503 .003 —.495 —.002 —.494
SD 134 .103 .098 .071 .130 .107 .093 .071
AD .139 101 .098 .071 134 .104 .095 .074
0.5 Mean -.007 491 -.008 495 -.004 487 -.003 496
SD .136 .107 .094 .073 135 .105 .092 .075
AD .139 .102 .098 .071 134 .104 .094 .073
0.8 Mean -.014 787 -.014 794 -.002 779 -.001 792
SD 155 .092 116 .063 .164 .093 110 .065
AD .165 .085 17 .060 .163 .088 115 .062
TABLE 2
Sizes and Powers of Wald-test for Null
Hypothesis Hy: (¢o,¢) = (0,0.5)
at Significance Level 5% in AR Models
(1000 replications)
n=200 n=400
g~ Cauchy to Cauchy to
¢ ¢

-1 .3 453 437 742 732

0 3 416 .371 698  .676

-1 4 196 .189 321 .328

0 4 152 152 232 212

0 5 .066 .066 .060 .057

0 6 150  .156 228 .209

1 6 199 214 350 .339

0 .7 416 .407 699  .661

17 472 465 720 742

— B = -4

Figure 1: Density Curves of Ngwr, and N(0,1) : ‘circles’ and ‘dots’, respectively




