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ABSTRACT 

The present article builds on the binomial model replica-
tion of portfolio selection under uncertainty in continuous 
time as presented by Dempsey (2005).  In the context of 
observable data, the model reveals an arithmetically-
defined equity risk premium for equity stocks over corpo-
rate bonds of approximately two percent as consistent with 
a natural log-wealth utility.  An interesting observation is 
that the calculated premium is a consequence of the 
mathematics of risk itself (rather than that of investors set-
ting prices at the start of each investment period).  The 
model predicts that investors are unlikely to be attracted to 
a low return risk-free asset (as either a positive investment 
or as a leveraging component of their portfolios) when al-
locating their portfolios across assets.  The model thereby 
challenges the practical application of the separation theo-
rem, which holds that all investors constitute their portfo-
lios as the risky market in combination with a risk-free as-
set.  Importantly and importantly, the model predicts that 
with changing sensitivity to market risk, investors, while 
trading at significantly changed prices, may nevertheless 
maintain their portfolio compositions relatively unadjusted. 

1     INTRODUCTION. 

In the context of financial markets, the present paper builds 
on Dempsey’s (2005) model for portfolio selection when 
outcome asset returns are volatile in continuous time.  The 
model illuminates a number of key issues in finance.  For 
example, both the essential nature and practical estimation 
of the equity risk premium as compensation for volatility 
(risk).  Arnott and Bernstein (2002) - corroborated by au-
thors such as Jones, Wilson and Lundstrum (2002), Ilma-
nen (2003), Hunt and Hoisington (2003), and Bostock 
(2004) - argue convincingly for a low equity risk premium.  
Briefly, while a considerable risk premium for stocks over 
bonds is supported by US history (stocks having outpaced 
bonds by some 5 percent throughout 75 years of history), a 

careful assessment of inflation and economic conditions 
through this time would not have justified investors hold-
ing as a reasonable “expectation” the high equity rates of 
return actually achieved.  Thus it appears that history has 
been kind to the most successful equity market in the 
world.  On the other hand, the history of inflation has 
worked, on balance, to be unkind to bonds.  In the present 
paper, we demonstrate that such assessment is consistent 
with the proposition that portfolio choices are subject to a 
“natural” log-wealth utility function.   
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 In the model, a log-wealth utility investor is character-
ized as selecting across assets so as to maximize the portfo-
lio’s geometric continuously-compounded growth rate.  
The selected portfolio is thereby a function of the individ-
ual asset variances and covariances, but is independent of 
the portfolio’s overall volatility.  In this sense, log-wealth 
utility is characterized as “risk neutral”.  Or, we can say, 
for log-wealth utility, the outcome risk creates its own re-
ward. 
 A novelty of the model is that the reward for risk is 
recognized as the result of the mathematics of risk itself, 
rather than as the result of investors setting prices at the 
commencement of a one-period model (in accordance with 
required risk-return tradeoffs).   
 The proposed model advances a number of further im-
plications for traditional portfolio theory.  For example, the 
model implies that investors allocate their portfolios be-
tween equity stocks and bonds with only a marginal regard 
for a low return risk-free asset.  The model thereby chal-
lenges a fundamental tenet of portfolio theory - that de-
pending on their individual level of risk aversion, investors 
allocate their portfolios between a market representation of 
the risk-free asset and a market representation of all risky 
assets.  Nonetheless, the model’s outcome results appear 
consistent with portfolio allocations as they are reported in 
practice (Canner, Mankiw, and Weil. 1997).  The model 
proposes a risk-free rate consistent with the CAPM at close 
to 2¼ percent real per annum, as opposed to a Treasury bill 
rate at less than 1.0 percent real per annum.  The implica-
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tion here is a much-reduced theoretical dependence of asset 
returns on beta; which is substantiated by share price per-
formances (Fama and French, 2003, for example).   
 The model is extended to consider the implications of 
a utility function other than log-wealth utility.  We deter-
mine a level of investor risk aversion at somewhat twice 
that encapsulated by the log-wealth utility function as re-
quired to account for investor expectations of return con-
sistent with those actually achieved over US stockmarket 
history.  While generally regarded as reasonable, such level 
of risk aversion nevertheless represents a significant depar-
ture from log-wealth utility.  The model predicts that out-
come adjustments in investor risk aversion may give rise to 
investors trading significantly adjusted share prices while 
maintaining relatively unadjusted the broad composition of 
their portfolios.  A level of stability is thereby imputed to 
the equity market. 
 The remainder of the article is arranged as follows.  
The following section assesses the implications of the 
Dempsey model for portfolio composition across the asset 
classes of equity stocks, bonds and a risk-free asset in the 
contest of log-wealth utility investors; while the section 
thereafter generalises the analysis to allow the more gen-
eral risk class of maximum mean return – minimum risk 
seeking investors.  The final section summarises the article.  
 

2     ASSET ALLOCATION ACROSS EQUITY 
STOCKS, BONDS AND CASH: THE MARKET RISK 
PREMIUM 

Dempsey (2005) has presented a binomial growth model 
for a portfolio of assets with normally distributed growth 
rates.  With two risky assets - stocks (S) and bonds (B)  - 
and a risk–free asset (in proportions, respectively, ωS, ωB, 
(1-ωS-ωB)), the basic model is as depicted as in Figure 1.  
In the model, the mean exponential growth rates for stocks 
and bonds are represented respectively as µS, µB, with 
standard deviations σS and σB; the continuously applied 
risk-free rate is represented as rf; and the correlation coef-
ficient between the exponential growth rates for stocks and 
bonds is represented as CSB. 
 Consistent with Dempsey (2005), the equations that 
model a natural log-wealth utility investor’s propensity to 
invest in such a portfolio may be summarised: 

 
(1) The investor’s utility (UP) may be identified as the 
portfolio’s mean exponential growth rate (µP): 
   UP   =   µP        
where the portfolio’s mean exponential growth rate (µP) 
relates in turn to (a) the portfolio’s continuously applied 
return (RP) that delivers the portfolio’s expected wealth 
outcome and (b) the volatility about such portfolio return 
(σP) as: 
 µP  =   RP  –  ½ σP

2
                      

 
so that on combining the above two equations we have:  
 UP  =   µP  =   RP  –  ½ σP

2
                           

(1)   
 
(2) Consistent with expression 1, the portfolio return (RP) 
relates to the portfolio’s volatility (σP) as: 
 [RP - rf ]   =   σP

2                          (2) 
 
(3) The investor’s vector (W) of optimal weights (ωi) 
across portfolio assets i is a function of (a) the matrix (Ω) 
of portfolio asset co-variances (σi,j) and (b) the vector (R) 
of expected asset returns (Ri) over and above the risk-free 
rate (rf) as: 
 W  =  Ω-1  R                               (3) 
and,  
 
(4) The CAPM relationship between an individual asset 
i’s expected return (Ri) and the market risk premium (RM  - 
rf), the risk-free return (rf), and the asset beta.(βi) is deter-
mined in continuous time as. 
 Ri   =   rf    +  βi * [ RM  - rf]                (4) 
 
 It should be noted that for normally distributed returns 
with mean µi and standard deviation σi, the return Ri that 
delivers the expected outcome relates to µi and σi

 as:  
 Ri   =   µi  +  ½ σi

2    (i = S, B)          (5) 
 
 Thus for a “two risky assets (Stocks, Bonds) with one 
risk-free asset” portfolio, the utility equation 1 expands as:  
      
UP=µP=ωS.(µS + ½σS

2) + ωB.(µB + ½ σB
2) + (1- ωS - ωB). rf  

              –½c[ωS
2.σS

2-½ωB
2.σB

2-2.CSB.ωS.ωB.σS.σB]         (6) 
 

with subscript S for equity stock and B for bonds.  In this 
case, the variance-covariance matrix Ω in equations 3 
represents: 
  ⎡  σS

2         σS,B
   ⎤         

    ⎢              ⎥ 
  ⎢  σB,S

         σB
2   ⎥            

        ⎣    ⎦ 
 
and R (the vector of expected returns over the risk-free 
rate) represents: [RS- rf , RB- rf].   
 
In which case, equation 3 may be expressed:  

 
 RS - rf       -   (ωS. σS

2     +   ωB. σS,B)         =   0                                 
                (7) 
 RB  - rf   -   (ωS. σB,S

    +  ωB. σB
2 )          =   0 

  
or: 
 RS  - rf      =    σS,P  
                                                                          (8)
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 RB - rf     =   σB,P 
 
 The above equations are summarised in Figure 2 with 
Pratt’s measure of investor relative risk aversion c set 
equal to one (the equations 10–16 reduce to equations 1-4 
and 6-8, respectively). 
 For a “two risky assets (Stocks, Bonds) with one risk-
free asset” portfolio, the utility equation 6 may be repre-
sented on a spreadsheet as in Figure 3 as a function of eq-
uity stocks (ωS) and bond (ωB) proportions.  In Figure 3, 
the top horizontal axis denotes the proportion of the portfo-
lio comprised of stocks (from 0 to 100 percent) while the 
left vertical axis denotes the proportion of the portfolio 
comprised of bonds  (from 0 to 100 percent).  Hence the 
diagonal line in bold has portfolio compositions for which 
ωS + ωB = 1 (which is to say, these portfolios have zero 
risk-free asset component).  Portfolios which include the 
risk-free asset (in proportion 1- ωS - ωB) are those that lie 
above the diagonal line. The inclusion of portfolios below 
the diagonal would imply borrowing of the risk-free asset 
in proportion (1- ωS - ωB).   
 In Figure 3, the input values are somewhat rounded 
out but chosen nevertheless to reflect historical data.  The 
mean exponential rate for corporate bonds (µB) is set at 2.5 
percent per annum, with standard deviation (σB) about such 
rate at 10 percent.  The standard deviation (σS) for equity 
stock exponential rates is set at 20 percent, and the correla-
tion coefficient between stocks and bond returns (CSB) at 
0.25 (cf, for example, Ibbotson Associates, 2001).  The 
risk-free rate (rf) and the mean exponential growth rate (µS) 
for equity stocks have been chosen in accordance with 
equilibrium considerations.  Thus the significance of des-
ignating 2.25 percent as the risk-free rate (rf) is that at any 
lower rate, investors decline to invest in the risk-free asset, 
while at a higher rate, investors decline to lever their port-
folios with the risk-free asset.  The significance of desig-
nating the annualised mean exponential growth rate for eq-
uity stocks (µS) at 3.0 percent in Figure 3 is that such rate 
is then sufficient to “clear” the market” at 60 - 70 percent 
equity stocks and 30 – 40 percent corporate bonds (in the 
sense that expected utility is maximised by such a portfo-
lio).1      

 
The insights of this section may be summarised: 
 1. Portfolio selection: maximizing mean exponential 
growth rate.    In Figure 3, portfolio utility is identified as 
the portfolio’s mean exponential growth rate 
(µB)(expression 6).  The maximum rate, µP = 3.25, is 
achieved with asset components ωS, ωB, respectively, 65 
percent and 35 percent (consistent with the solution of 
equations 3, see footnote 1).  Such rate µP = 3.25, we note, 
is greater than the mean exponential growth rate of either 
of the asset component growth rates individually (µS = 3.0, 
µB = 2.5).2   

 
 2. The equity risk premium.    Expressed in terms of 
a mean exponential growth rate as in Figure 3, the equity 
risk premium for the expected return on equity stocks (µS = 
3 percent) over the rate on corporate bonds (µB = 2.5 per-
cent) appears as little as ½ percent.  The premium has been 
calculated as that which clears the market at about 60-70 
percent equity stocks / 30-40 percent corporate bonds.  Ex-
pressed in terms of the continuously applied growth rate Ri 
required to generate the asset i’s expected wealth outcome, 
we have (with equation 5): Ri = µi + ½σi

2 (i = S, B), and 
hence for equity stocks, RS = [0.03 + ½ (0.2)2] = 5 percent 
annualised, and for corporate binds, RB = [0.025 + ½ 
(0.1)2] = 3 percent annualised, as clearing the market at ap-
proximately 60-70 percent equity stocks / 30-40 percent 
corporate bonds.  In discrete time, with an asset’s simple 
arithmetic return (ARi) related to the asset’s growth rate as : 
1 + ARi  =  exp(Ri)   =  exp(µi + ½ σi

2)              (9) 
(consistent with footnote 3), the periodic arithmetic returns 
for stocks (ARS) and corporate bonds (ARB) are both ad-
justed slightly upward from the RS, RB values, implying a 
periodic arithmetic risk premium for equity stocks over 
corporate bonds at approximately 2.0 percent.  Such pre-
mium values are obviously much less than what is inferred 
from a direct measurement from US markets historical re-
turns.  The number does, however, support the arguments 
of such as Arnott, and Bernstein (2002) for a low equity 
risk premium – based on arguments that actual stock equity 
returns have in the event over-scored rationally anticipated 
returns (calculated as dividend yield plus dividend yield 
growth) (due to once-off, largely unanticipated upward re-
valuations of stocks), while actual corporate bond returns 
have in the event under-scored rationally anticipated re-
turns (due in main part to unanticipated rates of high infla-
tion).   
 
 3. The risk-free rate as input parameter to the 
CAPM.    The model determines the theoretical rate that 
equates borrowing and lending of the risk-free asset in 
equilibrium with the market’s risky assets at 2.25 percent.  
As such, the number represents the appropriate risk-free 
rate in the context of equilibrium models such as the 
CAPM.  By stipulating such rate as the “equilibrium inter-
cept”, the analysis is in the spirit of Black’s (1972) rather 
than the Sharpe (1964)-Lintner (1965) version of the 
CAPM.   Notwithstanding, the estimated geometric return 
on long-term Government bonds comes in at close to 2.25 
percent (Ibbotson Associates, 2001), which suggests that 
such rate might be taken as representing the market’s risk-
free rate.4   In which case, the Sharpe-Lintner CAPM also 
remains supported by the analysis.  We should note that 
tests of the CAPM that fail to incorporate the correct equi-
librium value of the risk-free rate are likely to be invalid.  
For example, the impact of establishing the equilibrium 
risk-free rate at 2.25 percent - as compared with a lower 
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rate (0.6 percent as indicated by the historical return for 
Treasury bills, for example) - is to significantly “flatten” 
the theoretical dependence of expected risky returns on 
beta from a gradient of approximately 4 percent additional 
return per unit of beta to about 2 percent expected return 
per unit of beta.5   It is noted that Fama and French’s (2003) 
presentation of CAPM predictions of returns versus beta 
(using monthly Treasury Bills as the risk-free rate) appear 
on a gradient that appears approximately twice that as for 
their empirical findings (their Figure 2).
 
 4. “Cash” in investor portfolios: the separation 
theorem.    It appears that the Treasury bill rate (with an 
historical real rate of return 0.6 percent per annum) does 
not constitute a risk-free asset in equilibrium with markets.  
The rate is simply insufficient to attract investment as a 
component of a diversified portfolio.  As to borrowing at 
such a risk-free rate (0.6 percent real per annum), we note 
that even allowing perfect capital markets, an investor is 
unable to borrow at a risk-free rate (guaranteed repayment 
of principal plus risk-free interest) without additional in-
surance against a shortfall below risk-free growth for that 
portion of the risky portfolio financed by the risk-free bor-
rowing.  As calculated by Bodie (1995), the cost of the re-
quired (Black-Scholes calculated) “put” option per dollar 
of investment decreases on an annualised basis with the 
duration of the investment.  Nevertheless, Bodie calculates 
an investment horizon longer than 10 years as required to 
bring the annualised cost below 2.5 percent.  The cost of 
guaranteeing a risk-free rate is with the borrower – the out-
come of which is that a risk-free asset at 0.6 percent may 
remain unattractive as either a long or a short position 
 
 5. Diversity in equity-bond portfolio compositions.    
The “flatness” of the utilities about the 65 percent equity 
stocks – 35 percent corporate bonds mark in Figure 3 im-
plies an effective range of portfolio compositions across 
equity and bonds (with little or no risk-free asset compo-
nent), which appears broadly consistent with observed 
practice (for example, Canner, Mankiw and Weil, 1997).   
 In the following section, we present the log-wealth 
utility function as a special case of the broader class of 
minimum risk - maximum return utility functions.   

3     MEAN-VARIANCE OPTIMIZATION: THE 
EFFICIENT FRONTIER 

Consistent with the previous section, we set the continu-
ously-applied growth rate for equity stocks (RS) and corpo-
rate bonds (RB) at, respectively, 5.0 and 3.0 percent real per 
annum, with standard deviations (σS and σB), respectively, 
20 and 10 percent and correlation coefficient (CSB) 0.25.  
We incorporate a Treasury bill with continuously-applied 
growth rate (RTB) 0.6 percent real with standard deviation 
(σTB) 4.0 percent and correlation coefficients with equity 

stocks and bonds (CS,TB and CB,TB), respectively, at 0.12 
and 0.60 (cf, for example, Ibbotson Associates, 2001).  
Figure 4 then depicts the “efficient frontier” of maximum 
expected portfolio returns RP (y-axis) that can be achieved 
by manipulation of the portfolio proportions ωS, ωB, (1-ωS- 
ωB) for stocks, bonds and Treasury bills for a given volatil-
ity (standard deviation) σP (x-axis).6  

The dotted curve in Figure 4 represents the portfolio 
mean exponential growth rate, µp (as equation 6).  Consis-
tent with the previous section (Figure 3), such growth rate 
is maximised at the portfolio 65 percent equity stocks, 35 
percent corporate bonds.  Consistent also with the previous 
section, the portfolio is located on the efficient frontier at 
the point σP (x-axis) = √0.02 = 14.14 percent; RP (y-axis) = 
4.25 percent (cf footnote 1) and the line from the intercept 
at 2.25 percent is tangent to the efficient frontier at this 
point. 
 The log-wealth utility function of the investor who 
chooses the portfolio 65 percent equity, 35 percent bonds, 
along with the essential equations describing the composi-
tion and return characteristics of the portfolio are summa-
rised in Figure 2 with Pratt’s measure of investor relative 
risk aversion c set equal to one (equations 10–16 then re-
duce to equations 1-4 and 6-8, respectively).7   Investors 
who are “risk-seeking” (with c less than 1) (but who chose 
the highest allowable arithmetic return for a given volatil-
ity of returns) choose portfolios higher on the efficient 
frontier curve, while investors who are “risk-averse” (with 
c greater than 1) choose portfolios lower down on the 
curve.8   Equation 12 reproduces Merton’s (1969) result 
(his equation 60) and equation 13 Merton’s (1973) deriva-
tion of the CAPM. 
 Alternatively, as the “data to be explained”, we may 
consider stock equity and corporate bond rates at, say, re-
spectively, 8.0 and 3.0 percent real per annum as reflecting 
historical US rates.  Figure 5 displays the efficient frontier 
in this case.  Imposing the requirement that the market 
clears at close to 65 percent equity stocks, 35 percent 
bonds (reflecting Canner et al, as above), we then have 
equations 15 as: 

 
0.080  - rf     =    c. [ωS.(0.2)2        +     ωB. (0.25).(0.2).(0.1) ] 
0.030 -  rf     =    c. [ωB.(0.1)2        +      ωS. (0.25).(0.2).(0.1) ] 
 
with ωS = 0.65, ωB = 0.35.  The equations now imply an in-
vestor’s relative risk aversion c at a little less than 2.5 and 
a risk-free rate at a little below 1.5 percent real annually.  
The portfolio is located on Figure 5 where the line from the 
intercept at 1.5 percent is tangent to the efficient frontier, 
which occurs at the point σP (x-axis) = √0.02 = 14.14 per-
cent (as calculated in footnote 1) and RP (y-axis) = 
(0.65).(0.08) + (0.35).(0.03) = 6.25 per cent.  The portfolio 
is that which maximises the utility function equation 14  
(Figure 2) (with c = 2½), which is represented by the lower 
dashed curve in Figure 5.  The higher dotted curve in Fig-
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ure 5 represents equation 14 with c = 1, which is to say, the 
function that is maximised by a log-wealth utility investor.9
 
 A level of relative risk aversion c = 2 has generally 
been regarded as reasonable in the literature (Copeland and 
Weston, p. 90, for example).10   Nevertheless, the implica-
tions of even such departure from c = 1 [with log-wealth 
utility U(W) = ln(W)] are not at all trivial.  To see this, 
consider that c = 2 may be represented as the power func-
tion of wealth, U(W) = - Wo /W (the inverse of outcome 
wealth, W, normalised by initial wealth, Wo, since 
U’’(W)/U’(W) = 2, see footnote 7).  We may now ask, for 
example: what is the growth factor for an investor’s wealth 
that offers positive utility equal to the negative loss in util-
ity when the investor’s wealth is halved?  To answer first 
for a log-wealth utility investor, since: 
    ln(N)  =   - ln[(1/N), for all N 
we have: an increase in wealth by a factor of 2 (or N) pro-
vides a positive utility equal to the negative loss in utility 
when wealth is halved (or multiplied by 1/N).  For an in-
vestor subject to the power utility function, U(W) = -Wo 
/W, however, a halving of wealth leads to the loss of util-
ity: [-Wo /(½Wo)  -  (-Wo /Wo) ] = -1.  The outcome wealth 
(NWo) required to provide utility equal to +1, is deter-
mined as: [-Wo /(NWo)  -  (-Wo /Wo) ] = 1, implying the 
necessity of N = infinite (in other words, such investor if 
offered a 50 percent probability of losing half of initial 
wealth, cannot be compensated by any upside potential). 

The implications of the above observations may be 
summarised: 
 1. “Risk neutrality” of log-wealth utility investors: 
risk creates its own reward.    On the maximum return - 
minimum variance frontier, there exists a portfolio for 
which mean exponential growth rate is maximised.  A log-
wealth utility investor (with relative risk aversion c = 1) is 
characterised as choosing this particular portfolio (inde-
pendent of the portfolio’s variance).   
 
 2. Potentially high values for the equity risk pre-
mium.    An accommodation of historical US stock per-
formances as indicative of investor expectations requires a 
degree of risk aversion at somewhat greater then twice that 
as captured by a log-wealth utility function.  
 

3. Changing equity prices and stability.    Changing 
equity prices and stability.    In response to changes in in-
vestor risk aversion (brought about, for example, by inves-
tors becoming more “fretful” in response to perceived 
changing conditions), (i) required expectations of return – 
and thereby prices – are likely to adjust quite significantly 
(an adjustment of investors’ risk aversion parameter c from 
1 to 2½ predicts an adjustment in required equity expected 
returns from 5 to 8 percent), while, simultaneously, (ii) in-
vestor portfolio compositions may remain relatively unad-

justed.  The model thereby implies a level of stability with 
markets continuing to clear. 

4     CONCLUSION 

The paper has presented a binomial model for volatile asset 
returns and investor optimal portfolio composition in con-
tinuous time.  The model is consistent with the framework 
developed by Merton (1969, 1973) and with Samuelson’s 
arguments (1963, 1989, 1994) that portfolio choices can be 
indifferent to the investor’s time-horizon.  It is also consis-
tent with Dempsey’s (2002) model applied to a single risky 
asset combined with a risk-free asset. 
 A log-wealth utility investor (with c = 1) seeks to 
maximise utility by maximizing the mean (geometric) ex-
ponential growth rate of their portfolios.  In which case, an 
expected (arithmetic) annualised real return on stocks at 
about 5.0 percent (as against a real return on corporate 
bonds at 3.0 percent) is sufficient to “clear” the market” at 
60 - 70 percent stocks and 30 – 40 percent bonds, with in-
vestors choosing portfolios within this range without re-
source to a risk-free asset.  The model thereby challenges 
the fundamental “separation theorem” that investors con-
struct efficient portfolios as a combination of the market of 
all risky assets and a risk-free asset.  
 A feature of the model is that the equity risk premium 
is accounted for by the internal mathematics of risk over 
continuous time - rather than by the concept of investors 
setting prices at the commencement of a one-period in-
vestment time frame as in the CAPM.  In which context 
idiosyncratic risk is recognised as a component of equity 
returns.  Notwithstanding, the formulation is actually con-
sistent with the CAPM in continuous time.  It has been ob-
served that the model’s predictions fit quite well with 
Malkiel and Xu’s (1997) empirically observed relationship 
between US equity performances and idiosyncratic risk.   

The model predicts that a level of investor risk aver-
sion at somewhat twice that encapsulated by the log-wealth 
utility function as required to account for investor expecta-
tions of return consistent with those actually achieved over 
US stockmarket history.  Additionally, and importantly, the 
model predicts that with changing sensitivity to market 
risk, investors may continue to hold their portfolios rela-
tively unadjusted while trading at significantly changed 
prices.  The model thereby implies a level of stability for 
stock markets. 

 NOTES 

1. We see this in terms of equations 7 (as a simplified 
form of equations 3) for the portfolio comprising 65 per-
cent stocks, 35 percent bonds.    For then (noting that Ri = 
µi  +    ½σi

2,  i = S, B, equation 5) we have: 
 
µS + ½(0.2)2-0.0225=(0.65).(0.2)2+(0.35). (0.25).(0.2).(0.1) 
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µB+½(0.1)2-0.0225=(0.35).(0.1)2+ (0.65). (0.25).(0.2).(0.1) 
which reproduces (to nearest ¼ percent) µS = 3.0 percent 
and µB  =  2.5 percent.   
 
For this portfolio, we may additionally derive the portfo-
lio’s overall arithmetic return, RP, and its variance, σP

2, as: 
 RP    =   0.65*RS +  0.35*RB  = 0.65 (5.0)  +  0.35 (3.0)   
   =  4.25 percent (to nearest ¼ percent) 
and   
 σP

2  =     ωS
2.σS

2   +  ωB
2.σB

2   +  2 ωS.ωB.CS,B.σS.σB             
 =(0.65)2.(0.2)2+(0.35)2.(0.1)2 

+2.(0.65).(0.35).(0.25).(0.2).(0.1) =  2.0 percent 
 

so that we have both [RP – rf ]  = (4.25 – 2.25) = 2.0 per-
cent, and σP

2 = 2.0 percent, consistent with equation 2.   
The portfolio’s standard deviation, σP, is then √2.0, ap-
proximately 14.14 percent. 
 
2. In discrete time, the portfolio’s mean exponential 
growth rate (µP) may be regarded as identifying most 
closely with the portfolio’s geometric growth rate (GRP) 
calculated over N discrete periods defined as: 
              N   
               (1 + GRP)N    =  Π (1 + ri)  = WN /Wo
                                           i = 1 
where: WN =  [measured value of portfolio at end of period 
N], Wo = [commencement value of portfolio] (for example, 
Jacquier, Kane and Marcus, 2003). 

 
3. The portfolio’s periodic arithmetic return (ARP) – cal-
culated for a sequence of N (equally) discrete periodic re-
turns (ri) as: 
                   N 
                ARP   =  1/N  ∑  ri 
                                                i = 1 
[where each ri = Wi/Wi-1 - 1, Wi = outcome wealth at end of 
period i] - and the standard deviation about such return (SP) 
do not strictly identify the portfolio’s mean continuous 
growth rate (µP) and the standard deviation about such rate 
(σP).  The theoretical relationships are: µP = ln(1+ARP) – ½ 
ln{1 + [SP/(1+ARP)]2}; and σP

2 = ln{1 + [SP/(1+ARP)]2}(for 
example, de la Grandville, 1998, Ibbotson Associates, 
2001, Jacquier, Kane and Marcus, 2003). 

 
4. In which case we are obliged to interpret the 

short-term Treasury bill rate as operating under considera-
tions disconnected from the otherwise prevailing market.  
Investor liquidity requirements may be considered as al-
lowing such a possibility, along with such requirements as 
Treasury interventions to influence interest rates, foreign 
Treasury purchases or sales of such bills in order to influ-
ence domestic exchange rates.   

 
        5. To see this, consider the individual component as-
set betas calculated as:    

  βi = σi,M /σM
2   (i = S, B) 

where for the portfolio M [65% stocks, 35% bonds]: 
σS,M   = ωS.σS

2  +  ωB.CS,B.σS.σB    

    = (0.65)(0.2)2 + (0.35)(0.25)(0.2)(0.1) = 2.75 percent;     
and   σM

2   =  2.0 percent (footnote 1),
 
giving:    βS =  0.0275  / 0.02  = 1.4.   And similarly,  βB  = 
0.4.  The return RM for this portfolio is  4.25 percent (foot-
note 1).  We thereby “recover” the above input returns for 
stocks and bonds [RS = 5.0 percent, RB = 3.0 percent] as:        
R S =   rf    + βS.[RM - rf ]  
 =  2.25 + 1.4* (4.25  - 2.25)    =  5.0 percent   
R B       =   rf    + βB.[RM - rf ] 
 =  2.25 + 0.4* (4.25  - 2.25)    =  3.0 percent   
 
which imply a gradient of (5.0 – 3.0)/(1.4 – 0.4) or 2 per-
cent per unit of beta.    If, however, we had set rf  = 0.6 per-
cent (the yield on Treasury bills), we would have antici-
pated the returns as: RS = 0.06 +1.4.(4.25 - 0.06) =  5.84 
percent, and  RB =  0.06 + 0.4 (4.25 - 0.06) = 1.65 percent – 
which is to say, a gradient of approximately 4 percent per 
unit of beta.   
 
6. We plotted the efficient frontiers using the Excel 
Solver routine.  The facility minimises the portfolio vari-
ance:  
σP=ωS

2.σS
2+ωB

2.σB
2+(1-ωS-ωB)2.σTB

2+2ωS.ωB.CS,B.σS.σB            
   +2ωS.(1-ωS-ωB).CS,TB.σS.σTB+2ωB.(1-ωS-ωB).CB,TB.σB.σTB    
 
in terms of the variables ωS, ωB for a given portfolio return 
RP subject to the condition:  
RP = ωS RS + ωBRB + (1-ωS -ωB)RTB (where RS, RB, RTB rep-
resent, respectively, the designated expected returns for 
stocks, bonds and Treasury bills). 
7. The generalisation may also be recognised on identify-
ing Pratt’s measure of relative risk aversion, c as: - 
W.U’’(W)/U’(W) (for example, Copeland and Weston, 
1988, p. 88), so that in the particular case U = ln(W), we 
have c =  -W ln’’(W)/ln’(W)  = 1.   
 
8.     To see how equations 10-16 are consistent with inves-
tors who seek to maximise portfolio expected return for a 
given level of risk of portfolio returns measured as vari-
ance, consider that the Lagrangian to be maximised by 
such an investor is: 
                            L   =   RP  –  λ (σP

2
  -   σX

2)              (*) 
with individual λ and σX

2, where σX represents a particular 
standard deviation for the portfolio (as for example 
Cuthbertson, 1997, pg. 45).  Expanding (*) we have: 
      L  =  ωS RS + ωBRB + (1-ωS -ωB) rf  + λ (ωS

2.σS
2    

  +  ωB
2.σB

2  +  2 ωS.ωB. σS,B  -  σX
2) 

and accordingly differentiating with respect to first ωS and 
then ωB, and equating outcomes to zero, we obtain:  
      RS - rf    -   c (ωS.σS

2   +   ωB.σS,B )   =  0           
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                    (15)       0.075            =    c. [ωS.(0.2)2        +     ωB. (0.25).(0.2).(0.1) ] 
      RB - rf    -   c (ωS.σB,S  +   ωB.σB

2 )   =  0          0.025           =    c. [ωB.(0.1)2        +      ωS. (0.25).(0.2).(0.1) ] 
 (where we have abbreviated  c = 2λ).  With c = 1, the 

above equations 15 reduce to equations 7.  In analogy with 
equations 3, equations 15 are thereby expressed: 

 The equations imply that investors with relative risk 
aversion c about 3.3 choose their portfolios with propor-
tions 50 percent equity and 50 percent corporate bonds.  
(The portfolio is located in Figure 5 where the line from 
the intercept at 0.5 percent is tangent to the efficient fron-
tier, which occurs at the point σP (x-axis) = √(ωS

2.σS
2 + 

ωB
2.σB

2 +2.ωS.ωB.CS,B.σS.σB) =   √[(0.5)2 .(0.2)2  +  (0.5)2 

.(0.1)2   +  2.(0.5).(0.5).(0.25).(0.2).(0.1)] = √0.015 = 12.25 
percent (cf footnote 1) and RP (y-axis) = (0.5).(0.08) + 
(0.5).(0.03) = 5.5 percent.)    

          W  =  Ω-1  R / c               (12) 
Likewise as in the text, we take it that equations 15 identify 
the return-variance structure for the total market portfolio.  
Then multiplying the first of these equations by ωS and the 
second by ωB and adding, we obtain: 
                        [ RM - rf ]   =   c.σM

2                   (11) 
Eliminating c in equations 15 with equation 11, and with 
beta defined as (σi,M /σM

2), we derive: 
   Ri   =   rf    +  βi * [ RM  - rf]   (i = S, B)           (13) 
10. The deferred consumption model of an investor sub-
ject to constant relative risk aversion of Mehra and Prescott 
(1985) and Mehra (2003) argues for a relative risk aversion 
value closer to 50, leading to the labelling of an “equity 
premium puzzle”.   In contrast, our model appears capable 
of accommodating historical US equity performances as 
indicative of investor expectations within much more rea-
sonable levels of investor risk aversion. 

Having established that an investor seeks to maximize the 
Lagrangian expression (*), the expression (with constant 
terms omitted) thereby represents an adequate measure of 
utility for such investor.  That is, we may write: 
   UP   =   RP  –  ½ c σP

2
                               (10) 

(as for example Cuthbertson, 1997, pg. 55).   
 
     9. If, reflecting historical Treasury bill rates, we 
consider a risk-free return at say, 0.5 percent per annum, 
we then have equations 15 as: 
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Figure 2: The Fundamental Equations of

Investor Utility and Portfolio Composition

UP   =   RP  –  ½ c. σP
2
                         (10)  

[ RP - rf ]   =   c.σP
2                          (11)  

W  =  Ω-1  R / c                       (12)  

Ri   =   rf    +  βi * [ RM  - rf]               (13) 

For a “two risky assets (Stocks, Bonds) one risk-free asset” portfolio, 

equation 10 expands as:       

UP   =   ωS.(µS + ½ σS
2) + ωB.(µB + ½ σB

2) + (1- ωS - ωB).rf  

  –  ½ c [ωS
2.σS

2  -  ½ ωB
2.σB

2    -  2.CSB. ωS.ωB. σS.σB ]  (14) 

and equation 12 expands as: 

RS - rf       -   c (ωS. σS
2     +   ωB. σS,B

 )         =   0   
                                                                                          (15) 
RB  - rf   -   c (ωS. σB,S

    +  ωB. σB
2 )          =   0  

or: 

RS  - rf      =   c. σS,P  
                                                                  (16)
RB - rf     =   c. σB,P 
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